Standard Practice for

Service Life Determination of Corrugated HDPE Pipes Manufactured with Recycled Content

AASHTO Designation: R 93-19¹

Technical Subcommittee: 4b, Flexible and Metallic Pipe

Release: Group 2 (June)

American Association of State Highway and Transportation Officials 444 North Capitol Street N.W., Suite 249 Washington, D.C. 20001

This is a preview. Click here to purchase the full publication.

Service Life Determination of Corrugated HDPE Pipes Manufactured with Recycled Content

AASHTO Designation: R 93-19¹

Technical Subcommittee: 4b, Flexible and Metallic Pipe

Release: Group 2 (June)

1.	SCOPE		
1.1.	This standard practice details the procedure for determining the service life of corrugated high- density polyethylene (HDPE) pipes containing recycled materials. Service life is relative to Stage II brittle failures via the slow crack growth mechanism.		
1.2.	The service life determination in this standard practice is based on analysis of failure data from testing conducted in accordance with ASTM F3181, the Un-Notched Constant Ligament Stress (UCLS) test.		
1.3.	This standard practice can be used to establish minimum UCLS performance criteria to ensure a desired service life at given service conditions for corrugated HDPE pipes containing recycled materials.		
1.4.	This standard practice is applicable for pipes containing recycled materials and manufactured in accordance to M 294. It is applicable both for pipes manufactured with post-consumer recycled (PCR) materials and post-industrial recycled (PIR) materials. It is not intended for pipes manufactured with only virgin materials.		
1.5.	The values stated in SI units are to be regarded as standard. Within the text, the U.S. Customary units are shown in parentheses, and may not be exact equivalents.		
2.	REFERENCED STANDARDS		
2.1.	AASHTO Standard:■ M 294, Corrugated Polyethylene Pipe, 300- to 1500-mm (12- to 60-in.) Diameter		
2.2.	 ASTM Standards: D4703, Standard Practice for Compression Molding Thermoplastic Materials into Test Specimens, Plaques, or Sheets F3181, Standard Test Method for the Un-notched, Constant Ligament Stress Crack Test (UCLS) for HDPE Materials Containing Post-Consumer Recycled HDPE 		

0	\sim	
•	_≺	
~	J	

- NCHRP Report:
 - Pluimer, M. L., J. Sprague, R. Thomas, L. McCarthy, A. Welker, S. Sargand, E. Shaheen, and K. White. National Cooperative Highway Research Program Report 870: Field Performance of Corrugated Pipe Manufactured with Recycled Polyethylene Content. NCHRP, Transportation Research Board, Washington, DC, 2018.

2.4. *Other Document*:

Pluimer, M. L. Evaluation of Corrugated HDPE Pipes Manufactured with Recycled Materials in Commuter Railroad Applications. Villanova University, Doctoral Dissertation. Proquest Publishing, 2016.

3. TERMINOLOGY

3.1. *Definitions*:

- **3.1.1**. *contaminant*—inorganic particulate matter or other non-HDPE material that creates inclusions or stress risers in the crystalline structure of HDPE.
- **3.1.2**. *crack initiation*—portion of the slow crack growth mechanism associated with the initial development of a craze zone and micro-cracks around a contaminant, void, or discontinuity (see Figure 1).
- **3.1.3**. *crack propagation*—portion of the slow crack growth mechanism associated with successive yielding of HDPE material ahead of a crack tip (see Figure 1).
- **3.1.4**. *Popelar shift method (PSM)*—method of bidirectionally shifting brittle crack failure data from HDPE specimens tested at elevated temperatures and stresses to other service conditions for lifetime prediction.
- **3.1.5**. *post-consumer recycled (PCR) HDPE materials*—HDPE materials from products that have served a previous consumer purpose (for example, laundry detergent bottles, milk bottles and other consumer goods).
- **3.1.6**. *post-industrial recycled (PIR) HDPE materials*—HDPE materials diverted from the waste stream during a manufacturing process that have never reached the end user.
- 3.1.7. *slow crack growth (SCG)*—a failure mechanism for HDPE defined by brittle cracks that propagate through the material under conditions of tensile stresses lower than its short-term mechanical strength, also known as Stage II failures (see Figure 1); comprised of two phases: crack initiation and crack propagation.