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APPENDIX A5—BASIC STEPS FOR CONCRETE BRIDGES 

A5.1—GENERAL 
This outline is intended to be a generic overview of the design process using the simplified methods for 

illustration. It should not be regarded as complete, nor should it be used as a substitute for a working knowledge of the 
provisions of this section. 

A5.2—GENERAL CONSIDERATIONS 
A. Design Philosophy (1.3.1)
B. Limit States (1.3.2)
C. Design Objectives and Location Features (2.3) (2.5)

A5.3—BEAM AND GIRDER SUPERSTRUCTURE DESIGN 
A. Develop General Section

1. Roadway Width (Highway-Specified)
2. Span Arrangements (2.3.2) (2.5.4) (2.5.5) (2.6)
3. Select Bridge Type

B. Develop Typical Section
1. Precast P/S Beams

a. Top Flange (5.12.3.2.2)
b. Bottom Flange (5.12.3.2.2)
c. Webs (5.12.3.2.2)
d. Structure Depth (2.5.2.6.3)
e. Minimum Reinforcement (5.6.7) (5.6.3.3)
f. Lifting Devices (5.12.3.2.3)
g. Joints (5.12.3.4.2)

2. CIP T-Beams and Multiweb Box Girders (5.12.3.5)
a. Top Flange (5.12.3.5.1a)
b. Bottom Flange (5.12.3.5.1b)
c. Webs (5.12.3.5.1c)
d. Structure Depth (2.5.2.6.3)
e. Reinforcement (5.12.3.5.2)

(1) Minimum Reinforcement (5.6.3.3) (5.6.7)
(2) Temperature and Shrinkage Reinforcement (5.10.6)

f. Effective Flange Widths (4.6.2.6)
g. Strut-and-Tie Areas, if Any (5.8.2)

C. Design Conventionally Reinforced Concrete Deck
1. Deck Slabs (4.6.2.1)
2. Minimum Depth (9.7.1.1)
3. Empirical Design (9.7.2)
4. Traditional Design (9.7.3)
5. Strip Method (4.6.2.1)
6. Live Load Application (3.6.1.3.3) (4.6.2.1.5)
7. Distribution Reinforcement (9.7.3.2)
8. Overhang Design (A13.4) (3.6.1.3.4)

D. Select Resistance Factors
Strength Limit State (Conventional) (5.5.4.2)

E. Select Load Modifiers
1. Ductility (1.3.3)
2. Redundancy (1.3.4)
3. Operational Importance (1.3.5)

F. Select Applicable Load Combinations and Load Factors (3.4.1, Table 3.4.1-1)
G. Calculate Live Load Force Effects

1. Live Loads (3.6.1) and Number of Lanes (3.6.1.1.1)
2. Multiple Presence (3.6.1.1.2)
3. Dynamic Load Allowance (3.6.2)
4. Distribution Factor for Moment (4.6.2.2.2)
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 a. Interior Beams with Concrete Decks (4.6.2.2.2b) 
 b. Exterior Beams (4.6.2.2.2d) 
 c. Skewed Bridges (4.6.2.2.2e) 

 5. Distribution Factor for Shear (4.6.2.2.3) 
 a. Interior Beams (4.6.2.2.3a) 

 b. Exterior Beams (4.6.2.2.3b) 
 c. Skewed Bridges (4.6.2.2.3c, Table 4.6.2.2.3c-1) 
 6. Reactions to Substructure (3.6) 
H. Calculate Force Effects from Other Loads as Required 
I. Investigate Service Limit State 
 1. P/S Losses (5.9.3) 
 2. Stress Limitations for P/S Tendons (5.9.2.2) 
 3. Stress Limitations for P/S Concrete (5.9.2.3) 
 a. Before Losses (5.9.2.3.1) 
 b. After Losses (5.9.2.3.2) 
 4. Durability (5.14) 
 5. Crack Control (5.6.7) 
 6. Fatigue, if Applicable (5.5.3) 
 7. Deflection and Camber (2.5.2.6.2) (3.6.1.3.2) (5.6.3.5.2) 
J. Investigate Strength Limit State 
 1. Flexure 
 a. Stress in P/S Steel—Bonded Tendons (5.6.3.1.1) 
 b. Stress in P/S Steel—Unbonded Tendons (5.6.3.1.2) 
 c. Flexural Resistance (5.6.3.2) 
 d. Limits for Reinforcement (5.6.3.3) 

 2. Shear (Assuming No Torsional Moment) 
 a. General Requirements (5.7.2) 
 b. Sectional Design Model (5.7.3) 
 (1) Nominal Shear Resistance (5.7.3.3) 
 (2) Determination of β and θ (5.7.3.4) 
 (3) Longitudinal Reinforcement (5.7.3.5) 
 (4) Transverse Reinforcement (5.7.2.3) (5.7.2.5) (5.7.2.4) (5.7.2.6) 
 (5) Horizontal Shear (5.7.4) 
K. Check Details 
 1. Cover Requirements (5.10.1) 
 2. Development Length—Reinforcement (5.10.8.1) (5.10.8.2)  
 3. Development Length—Prestressing (5.9.4.3)  
 4. Splices (5.10.8.4) (5.10.8.5)  
 5. Anchorage Zones 
 a. Post-Tensioned (5.9.5.6)  
 b. Pretensioned (5.9.4.4)  
 6. Ducts (5.4.6) 
 7. Tendon Profile Limitation 
 a. Tendon Confinement (5.9.5.4)  
 b. Curved Tendons (5.9.5.4)  
 c. Spacing Limits (5.9.5.1)  

 8. Reinforcement Spacing Limits (5.10.3) 
 9. Transverse Reinforcement (5.7.2.4) (5.7.2.6) (5.7.2.7) 
 10. Beam Ledges (5.8.4.3)  

 
A5.4—SLAB BRIDGES 

Generally, the design approach for slab bridges is similar to beam and girder bridges with some exceptions, as 
noted below. 

A. Check Minimum Recommended Depth (2.5.2.6.3) 
B. Determine Live Load Strip Width (4.6.2.3) 
C. Determine Applicability of Live Load for Decks and Deck Systems (3.6.1.3.3) 
D. Design Edge Beam (9.7.1.4) 
E. Investigate Shear (5.12.2.1)  
F. Investigate Distribution Reinforcement (5.12.2.1)  
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G. If Not Solid 
 1. Check if Voided Slab or Cellular Construction (5.12.2.2.1)  
 2. Check Minimum and Maximum Dimensions (5.12.2.2.1)  
 3. Design Diaphragms (5.12.2.2.3)  
 4. Check Design Requirements (5.12.2.2.4)  
 

A5.5—SUBSTRUCTURE DESIGN 
A. Establish Minimum Seat Width (4.7.4.4) 
B. Compile Force Effects Not Compiled for Superstructure 
 1. Wind (3.8) 
 2. Water (3.7) 
 3. Effect of Scour (2.6.4.4.2) 
 4. Ice (3.9) 
 5. Earthquake (3.10) (4.7.4) 
 6. Temperature (3.12.2) (3.12.3) (4.6.6) 
 7. Superimposed Deformation (3.12) 
 8. Ship Collision (3.14) (4.7.5) 
 9. Vehicular Collision (3.6.5) 
 10. Braking Force (3.6.4) 
 11. Centrifugal Force (3.6.3) 
 12. Earth Pressure (3.11) 
C. Analyze Structure and Compile Load Combinations 
 1. Table 3.4.1-1 
 2. Special Earthquake Load Combinations (3.10.8) 
D. Design Compression Members (5.6.4) 
 1. Factored Axial Resistance (5.6.4.4) 
 2. Biaxial Flexure (5.6.4.5) 
 3. Slenderness Effects (4.5.3.2.2) (5.6.4.3) 
 4. Transverse Reinforcement (5.6.4.6) 
 5. Shear (Usually EQ and Ship Collision Induced) (3.10.9.4.3) 
 6. Reinforcement Limits (5.6.4.2) 
 7. Bearing (5.6.5) 
 8. Durability (5.14)  
 9. Detailing (as in Step A5.3K) and Seismic (5.11) 
E. Design Foundations (Structural Considerations) 
 1. Scour 
 2. Footings (5.12.8)  
 3. Abutments (Section 11) (5.12.9) 
 4. Pile Detailing (5.12.9) 
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APPENDIX B5—GENERAL PROCEDURE FOR SHEAR DESIGN WITH TABLES 

B5.1—BACKGROUND 

The general procedure herein is an acceptable 
alternative to the procedure specified in Article 5.7.3.4.2. 
The procedure in this Appendix utilizes tabularized values 
of β and θ instead of Eqs. 5.7.3.4.2-1, 5.7.3.4.2-2, and 
5.7.3.4.2-3. Appendix B5 is a complete presentation of 
the general procedures in LRFD Design (AASHTO 2007) 
without any interim changes. 

B5.2—SECTIONAL DESIGN MODEL—
GENERAL PROCEDURE 

For sections containing at least the minimum 
amount of transverse reinforcement specified in 
Article 5.7.2.5, the values of β and θ shall be as 
specified in Table B5.2-1. In using this table, εx shall be 
taken as the calculated longitudinal strain at the mid-
depth of the member when the section is subjected to 
Mu, Nu, and Vu as shown in Figure B5.2-1. 

For sections containing less transverse reinforcement 
than specified in Article 5.7.2.5, the values of β and θ 
shall be as specified in Table B5.2-2. In using this table, 
εx shall be taken as the largest calculated longitudinal 
strain which occurs within the web of the member when 
the section is subjected to Nu, Mu, and Vu as shown in 
Figure B5.2-2. 

Where consideration of torsion is required by the 
provisions of Article 5.7.2, Vu in Eqs. B5.2-3 through 
B5.2-5 shall be replaced by Veff. 

For solid sections: 

2
2 0.9

2
h u

eff u
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For hollow sections: 
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Unless more accurate calculations are made, εx shall 
be determined as: 

 If the section contains at least the minimum 
transverse reinforcement as specified in 
Article 5.7.2.5:
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 CB5.2 

The shear resistance of a member may be 
determined by performing a detailed sectional analysis 
that satisfies the requirements of Article 5.7.3.1. Such 
an analysis (see Figure CB5.2-1) would show that the 
shear stresses are not uniform over the depth of the 
web and that the direction of the principal compressive 
stresses changes over the depth of the beam. The more 
direct procedure given herein assumes that the concrete 
shear stresses are uniformly distributed over an area bv

wide and dv deep, that the direction of principal 
compressive stresses (defined by angle θ) remains 
constant over dv, and that the shear strength of the 
section can be determined by considering the biaxial 
stress conditions at just one location in the web. See 
Figure CB5.2-2. 

For solid cross-section shapes, such as a rectangle 
or an “I,” there is the possibility of considerable 
redistribution of shear stresses. To make some 
allowance for this favorable redistribution it is safe to 
use a root-mean-square approach in calculating the 
nominal shear stress for these cross sections, as 
indicated in Eq. B5.2-1. The 0.9 ph comes from 90 
percent of the perimeter of the spalled concrete section. 
This is similar to multiplying 0.9 times the lever arm in 
flexural calculations. 

For a hollow girder, the shear flow due to torsion is 
added to the shear flow due to flexure in one exterior 
web, and subtracted from the opposite exterior web. In 
the controlling web, the second term in Eq. B5.2-2 
comes from integrating the distance from the centroid of 
the section, to the center of the shear flow path around 
the circumference of the section. The stress is converted 
to a force by multiplying by the web height measured 
between the shear flow paths in the top and bottom 
slabs, which has a value approximately equal that of ds. 
If the exterior web is sloped, this distance should be 
divided by the sine of the web angle from horizontal. 

Members containing at least the minimum 
amount of transverse reinforcement have a 
considerable capacity to redistribute shear stresses 
from the most highly strained portion of the cross 
section to the less highly strained portions. Because 
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