
properties (use the SMA austenite yield strength and the SMA modulus of elasticity).  Only for a 
preliminary design under the load combination of “Extreme Event I”, the AASHTO response 
modification factors (AASHTO LRFD49, Table 3.10.7.1-1) may be used to reasonably size the 
columns and the adjoining members.  Nevertheless, SMA-reinforced ECC columns should be 
analyzed and designed according to the present guideline for seismic loads. 

Details of SMA-Reinforced ECC Columns 
The incorporation of ECC only over a partial length of columns should be permitted.  The length 
of the ECC portion of columns in the plastic hinge region should be at least 1.5 times the largest 
column cross-sectional dimension.   

The area of longitudinal reinforcing SMA bars (ASMA) in the SMA-reinforced ECC columns should 
satisfy: 0.01𝐴௚ ൑ 𝐴ௌெ஺ ൑ 0.04𝐴௚ (Eq. 8) 
where Ag is the gross area of member cross-section.  Since the austenite yield strength of SMA 
bars is usually lower than the steel bar yielding, a higher mount of longitudinal reinforcement than 
conventional columns is expected, but the reinforcement area should be within in the specified 
range.  NiTi SE SMA bars are available from No. 4 (13 mm) to No. 18 (57 mm).   

The incorporation of SMA bars only over a partial length of columns should be permitted and 
recommended to save cost.  The length of SMA bars should be the greater of (a) the analytical 
plastic hinge length (Eq. 2), and (b) 75% of the largest column cross sectional dimension (0.75D).  
The 0.75D limit was based on an experimental study using two SMA bar lengths in the plastic 
hinge region.  The column with the shorter SMA bars exhibited a lower drift capacity32.   

SMA bars are plain (with smooth surface) behaving similarly to debonded bars under cyclic 
loading.  When SMA bars are used over the entire length of members, mechanical anchorage 
should be used to anchor the bars in the adjoining members.  When SMA bars are utilized only in 
the plastic hinge region, reinforcing SMA bars should be connected to reinforcing steel bars using 
mechanical bar splices approved by the bridge owner.  SMA bars spliced with threaded (only those 
with parallel threads but not those with tapered threads) and headed bar couplers have shown large 
strain capacities.  Furthermore, large-scale SMA-reinforced columns incorporating these coupler 
types exhibited satisfactory performance under static and dynamic loads e.g.24, 38.  Figure 11 shows 
the headed bar splice developed for SMA bars.  Splicing should be permitted in the plastic hinge 
region of the columns pending the owner approval.  The drift capacity of mechanically spliced 
bridge columns needs to be reduced based on the coupler type, size, and location following design 
methods proposed by Tazarv and Saiidi50.   

The axial load acting on an SMA-reinforced ECC column including gravity and seismic demands 
(Pu) where a pushover analysis is not performed should satisfy: 𝑃௨ ൑ 0.15𝑓ᇱா஼஼𝐴௚ (Eq. 9) 
where Ag is the gross area of member cross-section and f�ECC is the nominal ECC compressive 
strength.  A higher axial load value may be used provided that a pushover analysis including the 𝑃 െ ∆ effect is performed to compute the maximum drift capacity of the column.  The aspect ratio 
of SMA-reinforced ECC bents should not exceed eight.  Columns with larger aspect ratios may 
fail at low drift ratios due to the 𝑃 െ ∆ effect.  
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FIELD APPLICATION 
The world first NiTi SMA-reinforced ECC bridge, the SR99 Alaskan Way Viaduct Bridge, was 
constructed in 2017 in Seattle, WA (Fig. 12).  The three-span bridge was 400-ft (120-m) long and 
30.5-ft (9.30-m) wide with precast post-tensioned concrete spliced tub girders.  The length of the 
middle span was 180 ft (55 m) and the two end spans were each 110-ft (34-m) long.   

The superstructure was supported by two single-column bents.  Each column had a square cross-
section with a side dimension of 5 ft (1.5 m) reinforced with SMA and steel bars in a circular 
pattern (Fig. 12a).  Longitudinal No. 10 (32-mm) SMA bars each 4-ft (1.22-m) long were used at 
the top plastic hinge of the columns and No. 10 (32-mm) steel bars were used elsewhere as the 
longitudinal bars.  SMA bars were connected to steel bars through headed reinforcement couplers 
(Fig. 11 & 12b).  The SMA bars were used only at the top of the column due to the soil condition 
of the site, which was prone to liquefaction.  ECC was also used only in the top plastic hinge region 
with a total length of 5 ft (1.5 m).  Complete details of the bridge can be found in Baker et al.51.   

The full version of the guidelines presented in this document was not available at the time of the 
design of the SR99 bridge.  However, the SMA material model and expected material properties 
(Fig. 1 and Table 1) were available and were used in the design of the SR99 bridge columns.  The 
length of the SMA bars in the plastic hinge region, which was 80% of the column side dimension, 
was determined through testing of three 33%-scale columns detailed based on the prototype SR99 
columns.  One conventional column was built with steel bars and concrete to  serves as  the  
reference model, and two columns were constructed using SMA bars and ECC in the plastic hinge 
region (Fig. 12b).  The only difference between the two SMA column models was the length of 
SMA bars.  One was built with 20-in. (508-mm) long SMA bars (equal to the test column side 
dimension) and another column was built with 15-in. (380-mm) long SMA bars (75% of the 
column side dimension).  Since both SMA-reinforced ECC columns showed better seismic 
performance compared with the reference column, the shortest SMA bar length was used in the 
field with a slight increase (from 75% of the column side dimension to 80%).  Complete detail of 
the column test results can be found in Nakashoji and Saiidi32.  The SR99 bridge is expected to 
remain fully functional with minimal damage after a severe earthquake.   

CONCLUSIONS 
Novel bridge columns are emerging to enhance the seismic performance of bridges by reducing 
the damage, increasing the displacement capacity, and/or reducing the residual displacement.  Of 
the different novel columns, NiTi SMA-reinforced ECC bridge columns have gained a substantial 
momentum in the U.S. since they exhibit lower damage and insignificant residual displacements 
after strong earthquakes.  The present study was performed to recommend a set of displacement-
based design guidelines for this column type based on all available test data and extensive 
analytical studies.  The key findings and recommendations are summarized as follows: 

 A simple design equation was proposed to relate drift to ductility based on the analysis of
approximately 700 bridge columns covering all practical ranges.  It was found that the
most important factor to relate drift to ductility is the column aspect ratio.

 The displacement demand of SMA-reinforced ECC bridge columns should be increased
by 20% when the equivalent static or spectral analysis is performed using spectra provided
by current codes.  For linear or nonlinear dynamic analyses, the damping ratio of SMA-
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reinforced ECC columns should be reduced from typical 5% to 3.2% to include the effect 
of flag-shaped behavior.    

 Superelastic SMA bars usually show a trilinear stress-strain behavior.  The design moment
and shear forces for SMA-reinforced ECC columns should include the effect of the
martensite modulus (k3 in Fig. 1).  Otherwise, the column force demands might be
underestimated.

 The residual displacements of SMA-reinforced ECC columns are insignificant increasing
the post-event functionality of the bridge.

 The displacement capacity of SMA-reinforced ECC columns are at least equal to that of
conventional columns following the proposed limitations on the SMA length.

The available test data and analyses have confirmed an enhanced performance for SMA-reinforced 
ECC columns compared with conventional RC columns.  The proposed guidelines were developed 
to facilitate the use of this type of novel column in the seismic regions of the nation.   

Further research is mainly needed at the material level such as the establishment of material 
behavior for different SMA alloys, and the use of different ECC mixes and confining methods.  
However, the present guideline skeleton might be used for the development of design 
recommendations for different SMA and ECC types.   
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NOTATION 
Ag  = The gross area of member cross-section (in2 or mm2), 𝛼  = The SMA secondary post-yield stiffness ratio,  
ASMA  = The area of longitudinal reinforcing SMA bars (in2 or mm2), 
Ar  = The column aspect ratio, 𝛽  = The SMA lower plateau stress factor,  
D  = The largest column cross sectional dimension (in. or mm), 𝛿  = The drift ratio (%), 𝛿௖  = The drift ratio capacity (%), 𝛿஽  = The drift ratio demand (%),  ∆௖  = The column displacement capacity (in. or mm), 
dbl  = The nominal diameter of longitudinal column reinforcing SMA bars (in.), 
EECC  = The secant modulus of elasticity for ECC (ksi or MPa), 𝜀௥  = The SMA recoverable superelastic strain,  𝜀௨  = The ultimate strain,  
f�ECC  = The nominal ECC compressive strength (ksi or MPa),  𝑓௬  = The SMA austenite yield strength (ksi or MPa),  
fye  = The expected austenite yield strength of the longitudinal column reinforcing SMA bars 
(ksi), 
Ieff  = The effective moment of inertia (in4 or mm4), 
L  = The column length (in. or mm), 
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𝜇  = The displacement ductility,  𝜇௖ = The displacement ductility capacity, 𝜇஽  = The displacement ductility demand, Ω  = The deformability factor, 1.2 for SMA-Reinforced ECC columns, 𝑘ଵ  = The SMA austenite modulus (ksi or MPa),  𝑘ଶ  = The SMA post yield stiffness (ksi or MPa),  𝑀௣  = the idealized plastic moment, 𝑀௨  = The column failure moment, 
Pdl  = The tributary dead load applied at the center of gravity of the superstructure (kips or kN), 𝑃௡  = The nominal axial capacity of an SMA-reinforced ECC column, 
Pu  = The axial load demand including gravity and seismic loads (kips or kN), 
Vc  = The ECC contribution to the shear capacity, 
Vn  = The nominal shear capacity of member,  
Vs  = The reinforcing steel contribution to the shear capacity,  
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Table 1–Minimum and expected tensile NiTi Superelastic SMA bar mechanical properties [10] 

Parameter Minimum(a) Expected(b)

Austenite modulus, 𝑘ଵ 4500 ksi (31025 MPa) 5500 ksi (37900 MPa) 
Post yield stiffness, 𝑘ଶ -- 250 ksi (1725 MPa) 
Austenite yield strength, 𝑓௬ 45 ksi (310 MPa) 55 ksi (380 MPa) 
Lower plateau stress factor, 𝛽 0.45 0.65 
Recoverable superelastic strain, 𝜀௥ 6% 6%
Secondary post-yield stiffness ratio, 𝛼 -- 0.3 
Ultimate strain, 𝜀௨ 10% 10% 

Note: (a) to be used in material production and for non-seismic design (e.g. service limit state). 
(b) to be used in seismic design of SMA-reinforced concrete members.

Source: Tazarv and Saiidi 10

Table 2–Bridge column drift ratio demand requirements 

Member Conventional 
Columns Novel Columns 

Single-column bents 𝜇஽ ൑ 5 
Aspect Ratio 4:      𝛿஽ ൑ 3.6Ω 
Aspect Ratio 6:      𝛿஽ ൑ 5.1Ω 
Aspect Ratio 8:      𝛿஽ ൑ 6.4Ω

Multiple-column bents 𝜇஽ ൑ 6 
Aspect Ratio 4:      𝛿஽ ൑ 4.4Ω 
Aspect Ratio 6:      𝛿஽ ൑ 6.2Ω 
Aspect Ratio 8:      𝛿஽ ൑ 7.8Ω 

Note: “𝛿஽” is the drift ratio demand (%) and “𝜇஽” is the displacement ductility demand 
  Use linear interpolation for intermediate aspect ratios 

Table 3–Minimum bridge column drift ratio capacity requirements 

Member Conventional 
Columns Novel Columns 

Single- or multi-column bents 𝜇௖ ൒ 3 
Aspect Ratio 4:      𝛿௖ ൒ 2.0%  
Aspect Ratio 6:      𝛿௖ ൒ 2.85% 
Aspect Ratio 8:      𝛿௖ ൒ 3.60%

Note: “𝛿௖” is the drift ratio capacity (%) and “𝜇௖” is the displacement ductility capacity 
  Use linear interpolation for intermediate aspect ratios 
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Source: Tazarv and Saiidi 10 
Figure 1–Superelastic SMA material model [10] 

(a) Uncofnined ECC36 (b) Steel Confined ECC31

Figure 2–ECC material models 
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(a) SMA Reinforced, FRP Confined Concrete (b) SMA Reinforced, Steel-confined ECC

(c) SMA Reinforced, Reinforced Rubber (d) Steel-confined ECC, FRP Tendon
Figure 3–Novel bridge columns incorporating SMA and/or ECC 

Figure 4–Model verification for a half-scale conventional RC bridge column 
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