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Eq. 4 and compute values for the percentage of reinforcing steel at 

cracking moments which are closer to the conditions of their actual 

practice. See Table 3. 

2. REVIEW OF DEFLECTION CALCUlATION PROCEDURES 

Table 1 tabulates the steps in the procedure for computing deflec­

tion for beams of homogeneous materials 1 the existing procedure for 

reinforced concrete beams and the proposed procedure for reinforced 
concrete beams. A study of the procedures indicates three areas in 

which deflection computations for reinforced concrete are more compli­

cated than for beams of other materials. 

(1) Beams of structural steel or timber are usually (but not always) 

statically determinate whereas concrete beams are usually continuous 1 

thus statically indeterminate. Continuity (regardless of the material 

from which the beam is constructed) leads to more computational effort 

to determine the .correct distribution of moments. Procedures for simpli-

"'"-·--· ·fying this computation considerably will be discussed in the next sec-
J tion. 

(2) Determination of the flexural stiffness of a concrete member 

involves long and tedious calculations working from basic principles 

and even longer calculations to determine the proper basis on which 

to make the stiffness calculations. By contrast 1 the flexural stiffness 

for beams of other materials is frequently tabulated. If tabulated values 

are unavailable, the flexural stiffness computations are no more diffi­

cult than for concrete beams and frequently much simpler. Procedures 

for simplifying this computation for concrete beams are discussed later. 

(3) The effects of time dependent strains must be accounted for. 

The ACI Building Code recommends a simple multiplier of the short term 

deflections to account for long term deflections and it is difficult to 

visualize further simplification from this procedure. Therefore this 

step in the simplified procedure will not be discussed further. 

3. SIMPLIFIED COMPUTATIONS 

3 .1 Estimation of Continuity Effects 

The classical equation for deflection of a prismatic beam is: 

a = --------------------- Eq. (1) 
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where fJ a = 
beam with uniform load o Note that the factor {a a depends upon a pre­

cise knowledge of the loading as well as end fixity and varies by a 

factor of 5 for these two conditions o If the end fixity condition and 

loading pattern are different from tabulated conditions in standard 

references 1 deflection must be computed by more lengthy procedures o 

Eq 0 (1) can be recast as follows: 

a = ,8bM12/EI - - - - - - - - - - - - - - - - - - - - - Eqo (2) 

where M is the moment at midspan o While /1 b also depends upon 

loading conditions and end fixity, it only varies from 3/48 for a fixed 

end beam to 5/48 for a simple beam with uniform load o It may· be noted 
that b varies by a factor of 1 o 6 7 between these two conditions o Due 

to the very narrow range in which iJ b varies 1 it is possible to estimate 

an appropriate factor by inspection without computing the degree of 

fixity o Therefore 1 the deflection equation is recast in the following 

form: 

Eq o (3) 

where M is the midspan moment at service loads 1 taken from the 

design for strength o (Note that this must be the actual moment and not 
an inflated moment which might arise from the use of standard moment 

factors such as those in Section 8 o 4 of the ACI Building Code (2) o) 

And where 4 is a factor taken from Table 2 for typical conditions o 

Other conditions can be interpolated between the tabulated conditions 1 

(but not extrapolated) using the following relationships: 
. . .... 

\' distributed loads 1 If = 0 o 4 + 0 o 6 (M/M 0 ) -) Eq o (4) 

for a concentrated load at midspan 1 /1= 0 o 8 (M/Mo} - - Eq 0 (5) 

where M0 is the total static moment at service loads 0 

3 o2 Estimation of Flexural Stiffness 

Using the proposed simplified procedure 1 the required percentage 

of midspan tensile reinforcing steel is compared to a limiting value in 

Table 3 o The required steel percentage must be computed on the basis 
of the steel required for the actual moment and not the actual steel 

furnished which in many cases is substantially larger 0 Table 3 is 

based on the previously stated assumption that the gross uncracked 
flexural rigidity can be used up to the cracking moment o The effective 
flexural rigidity is close to the flexural rigidity of the cracked section 

(i.e o 1/8 of the difference between the flexural rigidity of the cracked 

·-
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and uncracked sections, or less), when the actual moment is twice the 

cracking moment or more, For such high moments, the effective flex­

ural rigidity can be approximated by the flexural rigidity of the cracked 

section. For intermediate values of the actual moment, the effective 

flexural rigidity can be approximated by 60% of the uncracked flexural 

rigidity. 

The values in Table 3 were determined in the following manner. 

The percentage of principal reinforcement indicating the line of demar­

cation between an uncracked and a partially cracked cross-section can 

be computed by equating the moment at first cracking to the moment 

capacity of the reinforcing steel. Strength design as required by the 

1971 ACI Building Code (2) is assumed. Thus: 

frbwh2 't1/6 =Mer= fcrbw [ (d/hlh] 2 [o.9 fy/ 12] (1 - a/2d) 

and, JOcr = 5. 4 (1 - a/2d) (d/h)2. 

in which, 

x!!:.... 
fy Eq. (6) 

fer ratio of nonprestressed tension reinforcement required to 

resist a design moment equal to the cracking moment, 

times the average load factor, 

fr modulus of rupture of concrete. 

rl ratio of section modulus for an uncracked tee beam to 

section modulus for the stem alone of the uncracked tee 

beam. 

average load factor. 

(1 - a/2d) ratio of internal moment arm to the effective depth, d. 

and other symbols are as defined in the ACI Building Code (2) , 

In determining the values to be used in Table 3, each of the faei:tors 
in Eq. (6) needs to be analyzed for its effect on the percentage of rein­
forcing steel required, The evaluation for values used in Table 3 

follows: 

The value of "/1 as a function of the flange area of the tee beam 

is plotted in Fig. 1 • When the flange area is equal to the web area, 
't 1 is approximately equal to 1. 5 for the bottom fiber and 3. 25 for 

the top fiber. 
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A straight line variation for "11 1 can be assumed for other ratios of 

flange area to web area, as a first approximation. For greater refine­

ment, refer to Fig. l or compute the actual value. 

The average load factor, "t 2, has been assumed equal to l . 55 

((l . 4 + l . 7)/2] in the preparation of Table 3. This is equivalent to a 

condition of live load equal to dead load. While the actual factor can 

vary almost from l . 4 (for all dead load) to 1 . 7 (for all live load), the 

actual factor will almost always be within 5% of 1 . 55. 

The ratio of internal lever arm, (1 - a/2d), has been calculated for 

each type of member at the cracking moment. This results in the follow­

ing values used: 0. 95 for rectangular sections, 0. 99 for tee beams with 

tension in the stem, and 0. 82 for tee beams with tension in the flange. 

The value of d/h as a function of concrete cover and overall thick­
ness (h) of the member is shown in Fig. 2. A value of 0. 83 has been 

selected as being most representative. Almost all practical conditions 

will fall within 10% of this value and most will fall within 5%. 

If a conservatively high value of computed deflection is desired, 

a low value of modulus of rupture (as suggested in the ACI Building 
Code) should be used. However, a value of 550 psi (38. 7 kg/cm2) 

has been selected for the modulus of rupture of nominal 3000 psi con­

crete in preparing Table 3. In the author's experience, using this value 

results in more accurate estimates of the actual deflection for reinforced 

concrete beams than using a lower value for the modulus of rupture.* 

It is equivalent to 9. 3"'11 .15 f' c for 3000 psi concrete (2. 5-,J 1 .15 f' c 
for 211 kg/cm2 concrete). A still higher value of the modulus should 

be used if a conservatively low value of computed deflection is desired. 

In selecting the proper value of the modulus of rupture for deflec­

tion computations, a number of factors must be consid.ered. First, the 
flexural depends more on the average modulus of rupture than 

on the minimum modulus of rupture since a single random crack occur­

ring at very low loads will not affect the deflection of a beam very 

much. Second, in most beams , the average concrete strength will be 
higher than the minimum specified. Third, most beams will not exper­

ience their full design live load until after the concrete has gained 

more than the 28 day strength. Of course, the structural engineer 
should be aware of conditions in which these factors are not true. 

*Use of a high value for the modulus of rupture may be somewhat con­
troversial. It is beyond the scope of this paper to discuss the merits 

of this proposal. However, engineers may use any desired value of 
fr by substitution in Eq. (6). 
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The yield point of the reinforcing steel I fy 1 is taken equal to 

60 1 000 psi (4220 kg/cm2). 

,, 

To visualize the significance of Table 3 1 Figs. 3 I 4 and 5 have 
been plotted for rectangular sections 1 tee beams with tension in stem 

(positive moment) and tee beams with tension in flange (negative mom­

ent) 1 respectively. These figures plot the ratio of effective flexural 

rigidity to the gross uncracked flexural rigidity against the percentage 

of principal tensile steel required.· The abscissa can also be stated in 

terms of the cracking moment. To plot these curves 1 it is necessary to 

assume a value for the ratio of the moment of inertia for an uncracked 

tee beamso the moment of inertia for the stem of the uncracked tee beam 
alone ( 1 3). A value of l3 equal to 2. 0 was selected as the most 

representative when the area of the flange of the tee beam equals the 

area of the stem. See Fig. 6. 

4. ERROR 

4 The method for computing deflections recommended by ACI Comm-

ittee 435 (1) and adopted by the ACI Building Code (2) 1 on wh.ich the 

simplifying procedures are based 1 in itself has some error compared to 

experimental data (5). As compared to this method 1 the proposed sim­

plified procedures 1 of necessity I introduce some additional error. 

This additional error can be evaluated as follows: 

In allowing for the effects of continuity I a very bad estimate could 

result in error of 20% to 35% in the computed deflection. (For example 1 

if one estimates {5 = 1 • 0 for a beam with one end continuous when the 

correct value :is IJ = 0. 74 1 the error is 35%). However 1 in most cases I 

an experienced engineer should be able to estimate the value of fl 
within 10% of the correct value for elastic 1 prismatic beams. If fA 
is computed using Eq. (4) or (5) 1 the maximum error introduced will be 

less than 13% and will average less than 8%. See Fig. 7. 

The most serious error that will be introduced by this procedure is 

failure to use an accurate value for the midspan moment. However 1 the 

same error would be introduced in more lengthy procedures if inaccurate 
moments are used. It is not uncommon to use a midspan moment 50% 
higher than the actual moment or more when using standard moment 

coefficients or a limited moment distribution procedure. The engineer 

must resist the temptation to use these approximate but higher moments. 

" .. , .... In computing the flexural stiffness, no error compared to the ACI 

·-'Code (2) procedure will be introduced when the cross-section is un­

cracked. When the moment is larger than the cracking moment I the 
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simplified procedure yields a variable error depending upon the magni­

tude of the moment. See Fig, 8, For those who desire greater accuracy, 

a variable coefficient of the gross flexural rigidity can be selected from 

Figs, 3, 4 or 5 instead of the coefficient of 0. 6 recommended in Table 3, 

If this is done, the largest error compared to the ACI Code (2) procedure 

should be less than 10%. 

The errolj compared to the ACI Code (2) procedure, introduced by an 

inaccurate assessment of the percentage of principal tensile reinforce­

ment required by the cracking moment can be studied by reference to 

Fig. 8. If the actual cracking moment is lower than the assumed value, 

the error for a moment slightly less than the assumed Mer will be in­

creased and the error for a moment slightly more than the assumed Mer 

will be decreased. If the cracking moment is higher than assumed, a 
similar situation will prevail. A similar situation also prevails at twice 

the assumed value of Mer. The net effect is to change the range in 

which the maximum error occurs but without changing the magnitude of 

the maximum error itself significantly. 

Furthermore, other factors beyond the control of the structural 

engineer will affect the magnitude of the cracking moment more than 

the simplifications suggested here. For example, overloading the 

structure at an early age may crack it thoroughly even though it would 

be uncracked otherwise. 

Another pertinent question is the maximum error that can be expected 

from the introduction of error from three separate sources. That is, 1) 

error from the method recommended by the ACI .Building Code compared to 

experimental data, 2) error resulting from the recommended simplification 

to account for continuity, compared to the ACI Code procedure, and 3) 

error resulting from simplified computation of the flexural rigidity, 

compared to the ACI Code procedure. 

If it is conservatively assumed that, for each source, at least 50% 

of the value of the maximum error will be reached in 50% of the cases and 

that the errors will be normally distributed above and below the actual 

value of deflection in the structure, then the odds that the total error 
will be at least 50% of the sum of the maximum error from each of the 
three sources will be one chance in 64 or less than 2%. The odds that 

the total error from all three sources would reach 100% of their sum would 

be considerably smaller. Thus, it appears that engineers need not fear 

errors introduced by the approximate procedure provided that the proce­

dure is used consistently so as to distribute potential errors uniformly in 
each direction and provided that a total maximum error in deflection com­
putations of about 50% is acceptable. In most instances such error is 

more than acceptable since computed deflections will be small and well 

within tolerable limits, In instances when the approximate procedure re­

veals deflections that may be critical, more precise procedures can be 
used with little loss of effort for having used the approximate procedure, 
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5, EXAMPLE 

The uniformly loaded beam in Figs. 9 and 10 has a midspan mom­

ent of 3330 k-in (38,400 m-kg) which represents 70% of the total static 

moment, The required steel percentage is 1 • 7%, Estimate the short 

term deflection. (This is example 2-2 from Reference 6). 

= 0.8 from Table 2. (Or = 0.4 + 0.6 x 
, 7 = 0, 82 from Eq, (4) ) • Since the required steel percentage is greater 

than 1. 2% from Table 3, use the cracked flexural rigidity. Using pro­

cedures outlined in Reference 6 , the cracked flexural rigidity, Elcr = 

105 crbd3 where IJ cr = 0. 78 from Fig. 2-2 of Ref. 6 for b = 85.5 
inches (217 em) and Ec = 3. 5 X 1 o6 psi (2. 45 X 1 o5 kg/cm2). Thus 

Elcr = 105 x 0.78 x 85.5 (21.25)3 = 64 x 109 lb-in2 (193 x 109 kg-cm2). 

Alternatively, Elcr = EsAs (l-k)jd2 from Reference 1. Using classical 

equations, graphs or tabular data, k = 0.2157, j = .928 and Elcr = 29 
X 106 X 6.68 (1 - .2157) .928 X (21.25)2 = 64 X 109, 

The short term deflection, from Eq. (3), 

ai 0.8 (5/48) 3,330,000 (27 x 12)2/64 x 109 lb-in2 

0. 45 inches (1 .1 em) 
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NOTATION 

a computed deflection . 

·' At area of flange of tee beam I see Fig. 1 

area of web of tee beam I see Fig. 1 

hf overall thickness of flange of tee beam. 

M midspan moment at service loads 1 taken from the design 

for strength. 

total static moment at service loads (e.g. M 0 = wl2/8 

for uniform load) . 

deflection factor I see Eq. (3) 

deflection factor 1 see Eq. (1) 

deflection factor 1 see Eq. (2) 

11 ratio of section modulus for an uncracked tee beam to 

12 

¥3 

fJ cr 

section modulus for the stem of the uncracked tee beam 

alone. 

average load factor. 

ratio of moment of inertia for an uncracked tee beam to 

moment of inertia for the stem of the uncracked tee beam 

alone. 

ratio of nonprestressed tension reinforcement required to 

resist a moment equal to the cracking moment. 

Other symbols used in this paper are identified in the ACI Building 
Code (2). 
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TABLE 1 

Step by Step Procedures for Computing Deflection 

Procedure for Beams of 

Homogeneous Materials 

EXISTING Procedure for PROPOSED Procedure for 

Reinforced Concrete Beams Reinforced Concrete Beams 

1 • Compute loading 1 • Compute loading 1 . Compute loading 

2. Compute midspan & end moments 2. Compute midspan & end moments 2. Compute midspan moments 

The first two steps must be performed in the design for strength. Values obtained may be used in the 

deflection analysis. 

3 • Compute moment of inertia (I) 3 • Compute moment of inertia (I) 3. Compute f' w at midspan and 

at midspan. at midspan based on gross select procedure for computing 

concrete cross section. flexural rigidity fnvm Table 2. 

4. Compute section modulus of gross 4. Compute effective moment of 

concrete cross section at midspan. inertia (I) at midspan. 

5. Compute flexural stresses at mid-

span and compare them to modulus 

of rupture of the concrete • 

6. If tensile flexural stress is greater 

than modulus of rupture, compute 

moment of inertia (I) at midspan 

based on cracked .concrete cross 

section. 

7. Determine the effective moment of 

inertia by interpolating between 

cracked and qros s moment of inertia . 
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