Table 3 — FRCEFR compositions (per concrete cubic meter)

C ⁽¹⁾	W	SP ⁽²⁾	LF	FS	CS	CA_1	CA_2	SF
[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]	[kg]
300.2	228.0	127.7	7.0	533.6	457.6	295.0	294.3	60.0

(1) - Type I 42.5R and type I 52.5R; (2) – SP - Sika ViscoCrete® 3002 HE; 1 kg = 2.2 lbs

Table 4 — Concrete compositions of the tunnel segments (per m.)										
	C	W	$SP^{(1)}$	LF	FS	CS	CA_1	CA_2	SF	PF
	[Kg]	[Kg]	[Kg]	[Kg]	[Kg]	[Kg]	[kg]	[Kg]	[kg]	[ĸg]
Specimen 1	205	165	5.44	-	580.0	220.0	530.0	540.0	-	-
Specimen 2					550.5	451.8	289.7	289.4	75	
Specimen 3	360	114	8.51	247	524.5	460.3	297.3	297.1	45	2
Specimen 4					533.6	457.6	294.5	294.3	60	

Table 4 — Concrete compositions of the tunnel segments (per m³)

(1) - Sika ViscoCrete® 3002 HE; 1 kg = 2.2 lbs

List of Figures:

Figure 1: Influence of the content of PP fibers on the relative residual compressive strength; specimens subjected to 750 °C [1 MPa = 146 psi; 1 kg/m³ = 0.062 lb/ft^3]

Figure 2: Heating rate profiles used to a) select the nonmetallic fiber type; b) evaluate the compression and flexural behavior of FRCEFR (straight line – planned heating rate profile; dot line – experimental heating rate profile) [$^{\circ}F = ^{\circ}C \times 1.8 + 32$]

Figure 3: Mass loss (heating phase) [$^{\circ}F = ^{\circ}C \times 1.8 + 32$]

Figure 4: Influence of the level of temperature exposure on the Young's modulus [°F = °C x 1.8 + 32]

Figure 5: Influence of the level of temperature exposure on the compressive behavior [°F = °C x 1.8 + 32; 1 MPa = 146 psi]

Figure 6: Influence of the level of temperature exposure on the flexural behavior [°F = °C x 1.8 + 32; 1 MPa = 146 psi; 1 mm = 0.0394 in]

Figure 7: Influence of the level of temperature exposure on the equivalent flexural tensile strength parameters [°F = °C x 1.8 + 32; 1 MPa = 146 psi; 1 N = 0.2248 lb]

Figure 8: Trilinear stress-strain diagram for modeling the fracture mode I

Figure 9: Inverse analysis applied to the force-deflection curves obtained from the threepoint notched beam bending tests [°F = °C x 1.8 + 32; 1 MPa = 146 psi; 1 mm = 0.0394 in]

Figure 10: Influence of the maximum temperature on the: a) constitutive law that simulates the crack initiation and crack propagation; b) crack stress initiation and fracture energy [°F = °C x 1.8 + 32; 1 MPa = 146 psi; 1 mm = 0.0394 in; 1 N = 0.2248 lb]

Figure 11: FRCEFR tunnel segments number a) 1; b) 2; c) 3; d) 4

Figure 12: Fire resistance tests with tunnel segments: a) Variation of midspan displacement during test; b) Concrete temperature variation at the center section, at the depth of 32 cm from the face exposed to fire [${}^{\circ}F = {}^{\circ}C \times 1.8 + 32$; 1 mm = 0.0394 in]

Figure 13: Experimental load versus mid span deflection for the tunnel segments after having been exposed to ISO 834 curve [1 N = 0.2248 lb; 1 mm = 0.0394 in]

Figure 14: Indirect concrete tensile strength tests (Brazilian test) [1 MPa = 146 psi; 1 m = $39.4*10^{-6}$ in]

Lourenço et al.

Figure 1 — Influence of the content of PP fibers on the relative residual compressive strength; specimens subjected to 750 °C [1 MPa = 146 psi; 1 kg/m³ = 0.062 lb/ft³]

Figure 2 — Heating rate profiles used to a) select the nonmetallic fiber type; b) evaluate the compression and flexural behavior of FRCEFR (straight line – planned heating rate profile; dot line – real heating rate profile) [°F = °C x 1.8 + 32]

4.22

Figure 4 — Influence of the level of temperature exposure on the Young's modulus [°F = °C x 1.8 + 32]

4.23

Figure 5 — Influence of the level of temperature exposure on the compressive behavior $[^{\circ}F = ^{\circ}C \times 1.8 + 32; 1 \text{ MPa} = 146 \text{ psi}]$

Figure 6 — Influence of the level of temperature exposure on the flexural behavior [°F = °C x 1.8 + 32; 1 MPa = 146 psi; 1 mm = 0.0394 in]

Figure 7 — Influence of the level of temperature exposure on the equivalent flexural tensile strength parameters [°F = °C x 1.8 + 32; 1 MPa = 146 psi; 1 N = 0.2248 lb]