222 Azizinamini and Saatcioglu REFERENCES

- (1) ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-89)," American Concrete Institute, Detroit, 1992, 348 pp.
- (2) Saatcioglu, M. and Razvi, S., "Behavior of Confined High-Strength Concrete Columns, "Proceedings of CPCA/CSCE Structural Concrete Conference, May 19-21, 1993, Toronto, Ontario, Canada, pp. 37-50.
- (3) Cusson D.; Paultre, P.; and Aitcin, P. C., "Le Confinement des Colonnes en Beton a Haute Performance Par des Entries Rectangulaires," Annual Conference of the Canadian Society for Civil Engineering, May 27-29, 1992, Quebec, Que., Canada.
- (4) Razvi, S. and Saatcioglu, M., "Strength and Deformability of Confined High-Strength Concrete Columns," ACI Structural Journal, American Concrete Institute, Vol. 91, No. 6, 1994, pp. 678-687.
- (5) Razvi, S. and Saatcioglu, M., "Confinement Model for Normal-Strength and High-Strength Concrete Columns," Research Report, Ottawa-Carleton Earthquake Engineering Research Centre, Department of Civil Engineering, The University of Ottawa, Ottawa, Ontario, Canada, 1995.
- (6) Sugano, S.; Nagashima, T.; Kimura, H.; Tamura, A.; and Ichikawa, A., "Experimental Studies on Seismic Behavior of Reinforced Concrete Members of High Strength Concrete," Utilization of High-Strength Concrete-Second International Symposium, SP-121, American Concrete Institute, Detroit, 1990, pp.61-87.
- (7) Nagashima, T.; Sugano, S.; Kimura, H.; and Ichikawa, A., "Monotonic Axial Compression Tests on Ultura High-Strength Concrete Tied Columns," Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, 1992, pp.2983-2988.
- (8) Nishiyama, M.; Fukushima, I.; Watanabe, F.; and Muguruma, H., "Axial Loading Tests on High-Strength Concrete Prisms Confined by Ordinary and High-Strength Steel," Proceedings of the Symposium on High-Strength Concrete, Norway, June 1993, pp.369-376.
- (9) Cusson, D. and Paultre, P., "High-Strength Concrete Columns Confined by Rectangular Ties," ASCE Journal of Structural Engineering, Vol. 120, No. 3, March 1994, pp 783-804.
- (10) Azizinamini, A., Kuska, S., Brungardt, P. and Hatfield, E., "Seismic Behavior of Square High-Strength Concrete Columns," Structural Journal, ACI, Vol. 91, No. 3, May-June 1994, pp 336-345.

HSC in Seismic Regions 223

- (11) "CAN3-A23.3-94 Design of Concrete Structures for Buildings," Canadian Standards Association, Rexdale, Ontario, 1994.
- (12) Ibrahim, H. and MacGregor, J.G., "Flexural Behavior of High Strength Concrete Columns," Structural Engineering Report No. 196, University of Alberta, Edmonton, Alberta, March 1994.
- (13) Shin, S.W., Ghosh, S.K. and Moreno, J., "Flexural Ductility of Ultra-High Strength Concrete Members," Structural Journal, ACI, July-Aug. 1989.

			Vertical reinforcement			Т	Transverse reinforcement					
Specimen designation*	Applied axial load	Concrete compressive strength, psi	Bars	Nominal yield strength, ksi	Percent	Detail type†	Bar size	Nominal yield strength, ksi	Spacing, in.‡	Area ash, in. ²	Percent [§]	Percent of ACI**
D60-7-4-2%-0.2P	0.2 <i>P</i> ₀ ^{tt}	77901‡	8 - #6	60	2.44	1	#4	60	2%	0.4	2.73	142
D60-7-3C-1%-0.2P	0.2 P ₀	737011	8 - #6	60	2.44	2	#3	60	1%	0.33	3.82	150
D60-15-4-2%-0.2P	$0.2 P_0$	14,620‡‡	8 - #6	60	2.44	1	#4	60	2%	0.4	2.73	69
D60-15-3C-1%-0.2P	0.2 P ₀	14,540†‡	8 - #6	60	2.44	2	#3	60	1%	0.33	3.82	76
D120-15-3C-2%-0.2P	0.2 P ₀	14,730##	8 - #6	60	2.44	2	#3	120	2%	0.33	2.36	107
D120-15-3C-1%-0.2P	$0.2 P_0$	14,750##	8 - #6	60	2.44	2	#3	120	1%	0.33	3.82	150
D60-4-3C-2%-0.2P	$0.2 P_0$	381035	8 - #6	60	2.44	2	#3	60	2%	0.33	2.36	180
D60-4-3C-2%-0.4P	$0.4 P_0$	391055	8 - #6	60	2.44	2	#3	60	2%	0.33	2.36	180
D60-15-3C-1%-0.3P	0.3 Po	15,050	8 - #6	60	2.44	2	#3	60	1%	0.33	3.82	74

TABLE 1-DETAILS OF TEST SPECIMENS

*Specimen designation: DA-B-C-D-E, where A = nominal yield strength of transverse reinforcement; B = nominal compressive strength of concrete;

C = 4- #4 peripheral ties = 3C-#3 peripheral ties and #3 cross ties; D = spacing of transverse reinforcement over critical region; E = level of applied axial load. +See Fig. 4 for description of each detail type.

\$\$ Spacing of transverse reinforcement in potential plastic hinge region of test columns (see Fig. 3).

SRatio of volume of transverse reinforcement over spacing S to core volume of concrete confined by transverse reinforcement (measure out-to-out).

**Ratio of area of transverse reinforcement provided over that required by seismic provisions of ACI 318-89.

 $\dagger \dagger P_0$ is column axial load capacity, defined as follows: $P_0 = 0.85 f'_c (A_g - A_u) + A_u f_y$, where f'_c is concrete compressive strength at time of testing, ksi; A_g is gross area of column cross section, in.²; A_u is total area of logitudinal steel, in.², and f_y is yield strength of logitudinal steel obtained from coupon tests, ksi.

‡‡Concrete compressive strength at time of testing based on average of three 4 x 8-in. cylinder compression tests.

§§Concrete compressive strength at time of testing based on average of three 4 x 8-in. cylinder compression tests.

Test	M _{MAX} experimental, inkips	M _{ACI} inkips	M _{REV} inkips	<u>М_{мах}</u> <u>М</u> асі	$\frac{M_{MAX}}{M_{REV}}$
D60-7-4-2 ⁵ /8-0.2P	2195	1762	·	1.25	_
D60-7-3C-15/8-0.2P	2104	1714	—	1.23	_
D60-15-4-2⁵⁄8-0.2P	2402	2588	2300	0.93	1.04
D60-15-3C-1%-0.2P	2612	2577	2291	1.01	1.14
D120-15-3C-25/8-0.2P	3362	2600	2312	0.91	1.02
D120-15-3C-1%-0.2P	2550	2602	2313	0.98	1.1
D60-4-3C-25%-0.2P	1533	1275	_	1.2	—
D60-4-3C-25/8-0.4P	1489	1375		1.08	
D60-15-3C-15/8-0.3P	2691	3104	2395	0.87	1.12

TABLE 2 - MAXIMUM MEASURED AND CALCULATED MOMENT CAPACITIES

This is a preview. Click here to purchase the full publication.

Column	f´ _c , MPa	$P/(A_g f_c),$ percent	Drift, percent
C168	85	28	3.8
C173	85	51	2.0
C167	67	31	4.0
C171	67	57	1.4
C163	86	63	1.2
C165	116	42	2.0
C164	86	63	4.4
C166	116	42	4.8
C175	91	35	3.0
C177	91	52	1.6

TABLE 3-EFFECT OF AXIAL COMPRESSION ON DUCTILITY AND DRIFT RATES

Note: v and f'_c are in MPa.

Group No.	Test	f´ _c , psi	Transverse reinforcement, percent-ACI	Δ _{MAX,} in.	Maximum drift index, percent
	D60-7-4-25/8-0.2P	7790	142	1.4	3.9
1	D60-15-4-25/8-0.2P	14,620	69	1.04	2.9
	D60-7-3C-15%-0.2P	7370	150	1.84	5.1
2	D60-15-3C-15/8-0.2P	14,540	76	1.44	4.0

TABLE 4-EFFECT OF CONCRETE COMPRESSIVE STRENGTH

TABLE 5-EFFECT OF YIELD STRENGTH

Test	f´ _c , psi	Yield strength, ksi	Δ _{MAX.} in.	Maximum drift index, percent	Percent of ACI
D60-15-3C-15/8-0.2P	14,540	60	1.44	4.0	76
D120-15-3C-15/8-0.2P	14,750	120	1.40	3.9	150
D120-15-3C-25/8-0.2P	14,730	120	1.84	2.8	107

Column	f´ "MPa	$P/(A_g f'_c),$ percent	ρ _s . percent	$f_{_{yt}}$,MPa	$\rho_s f_{y_l} f/f_c$	Drift, percent
C163	86	63	4.37	328	0.17	1.2
C164	86	63	4.37	792	0.40	4.4
C165	116	42	4.37	328	0.12	2.0
C166	116	42	4.37	792	0.30	4.8
C170	67	57	2.60	316	0.12	1.0
C171	67	57	2.25	833	0.28	1.4
C172	67	57	2.08	1362	0.42	2.0
C178	100	35	1.82	744	0.14	1.0
C180	100	35	1.55	344	0.05	1.0
C181	100	35	1.28	1126	0.14	2.0

TABLE 6-EFFECT OF STEEL YIELD STRENGTH F_{vt} ON DUCTILITY AND DRIFT RATIOS (4)

Note: v and f'_c are in MPa.

Fig. 1—Colums with different concrete strengths showing similar axial strain ductility ratios (adapted from Reference 4)

Fig. 2-Effect of transverse reinforcement yield strength (adapted from Reference 9)

Fig. 3-Overall view of test specimens

Fig. 4—Details of transverse reinforcement (a) Type I, single peripheral hoops; (b) Type II, peripheral hoops and cross ties