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INTRODUCTION

Strengthening of reinforced concrete members by means of externally bonded reinforcement (EBR) is an efficient 
technique, nowadays often used in practice. Various studies on the structural behavior of concrete elements 
strengthened in flexure have been reported, mainly in relation to 4-point bending tests. Detailed studies on 
the serviceability behavior, however, have been less frequently reported in literature. Nevertheless, tension 
stiffening behavior and modeling for FRP strengthened concrete members at serviceability limit state has been 
reported by a number of authors.1-8

To study the behavior of steel reinforced concrete beams strengthened in flexure with externally bonded carbon 
FRP (CFRP) reinforcement, four-point bending tests were performed on nine large-scale beams with a rectangular 
cross-section (total depth 450 mm [17.7 in.], width 200 mm [7.9 in.]) and span length 3.8 m [150 in.], considering 
both prefabricated and wet lay-up CFRP types. Different amounts of internal and external reinforcement and 
different load histories were considered. The positive influence of the FRP EBR on the serviceability behavior has 
been observed in these flexural tests. To study the serviceability aspect further with respect to tension stiffening 
and cracking, further tests have been conducted on strengthened tensile members. Eighteen ‘tension stiffening’ 
tests were performed on concrete prisms with embedded steel reinforcing bar. The prisms have side length 100 mm 
[3.9 in.] and total length 1100 or 1200 mm [43.3 or 47.2 in.]. The parameters selected for these tests included type 
of FRP, concrete strength and amount of internal and external reinforcement.

Based on this experimental work, existing models for the tension stiffening, cracking behavior and deflections 
have been extended to include the influence of the externally bonded FRP reinforcement.

RESEARCH SIGNIFICANCE

For flexural members strengthened with FRP EBR, the serviceability behavior may often govern the design 
(especially if early debonding is avoided). This is due to the high strength of FRP materials. The cross-sectional 
area of bonded FRP reinforcement to fulfill ultimate limit state (ULS) conditions, may often be less than the cross-
sectional area needed to fulfill the serviceability limit state (SLS). In any case, the serviceability behavior is a 
crucial aspect of design. Hence, proper prediction models for the SLS are important, yet have so far been less 
investigated than the ULS.

EXPERIMENTAL INVESTIGATION: FOUR-POINT BENDING

Outline of the experiments
The test specimens consisted of nine reinforced concrete (RC) beams with rectangular cross-section, two of 

which are reference specimens. The beams have a width of 200 mm [7.9 in.], a total depth of 450 mm [17.7 in.], a 
span of 3.8 m [150 in.] and a total length of 4.0 m [157 in.]. The dimensions of the beams and the test set-up are 
shown in Fig. 1. The test parameters are given in Table 1. A first series of beams (BF1 to BF6) is characterized by a 
steel reinforcement ratio ρ

s
 = A

s
/bd of 0.96 % and is strengthened (except for the reference beam BF1) with one 

layer of CFRP. These beams allow the investigation of the variability of the strengthening effect (BF2/BF3), the 
influence of pre-cracking (BF4) and load application prior to strengthening (BF5). The load level for pre-cracking 
and pre-loading (point loads Q equal to 110 kN [24.7 kips]), was taken equal to the service load of the unstrength-
ened beam (based on observed deflections). For beam BF6, an extra FRP-end anchorage was provided to verify 
if the FRP debonding failure, obtained for the tested beams, initiated at the FRP ends or by intermediate crack 
bridging.

In a second series of beams (BF7 to BF9), half the amount of longitudinal steel reinforcement of the first series 
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was provided. Beam BF7 is the reference specimen, while beams BF8 and BF9 are strengthened in flexure by 
means of two different types of CFRP (prefabricated and wet lay-up CFRP).

For all beams the same concrete type was used, with a mean compressive cylinder strength f
cm

 at 28 days of 32.8 
MPa [4757 psi]. For the internal reinforcement deformed steel bars were used, with a guaranteed characteristic 
yield stress of 500 MPa [72,520 psi] and a diameter of 16 mm [0.63 in.]. The externally bonded reinforcement 
consisted of 1 layer CFRP strip (type CarboDur, width 100 mm [3.9 in.], thickness 1.2 mm [0.047 in]), except for beam 
BF9 for which 2 layers wet lay-up CFRP sheet (Replark, width 100 mm [3.9 in.], nominal thickness of one layer 0.111 mm 
[0.0044 in.]) were used. The length of the FRP EBR was taken as 3.66 m [144 in.] (maximum practically possible 
between the supports). The extra U-shaped anchorage provided for BF6, consisted of 1 layer Replark (width 330 mm 
[13.0 in.]). The main characteristics of the reinforcement, obtained by tensile testing, are summarized in Table 2. 
The external CFRP reinforcement was applied to the beams according to the procedures specified by the suppliers. 
Preparation of the concrete surface included sand blasting for beams BF2 till BF5, while grinding was used for 
beams BF6, BF8 and BF9. Before strengthening, beam BF4 was loaded up to a point load of 110 kN [24.7 kips] and 
unloaded. For beam BF5, a point load of 110 kN [24.7 kips] was applied prior to strengthening and curing.

During the tests,2 both manual and electronic measurements were taken, including midspan deflection, 
concrete, steel and FRP deformations in the central zone of the beam, strain distribution of the FRP along one 
half of the beam, appearance and development of cracks and crack widths.

Main test results
The strengthened beams failed by intermediate crack debonding after yielding of the internal reinforce-

ment. Strengthening ratio’s up to 38% were obtained, whereas for the tested beams no significant influence 
was observed on the failure load by pre-cracking the specimen. The beam strengthened under service load, 
failed at 95% of the ultimate load of the beams strengthened under self weight. For a further discussion on the 
test results at ultimate state, refer to Reference 2. In the following sections, the test results in terms of service 
behavior are discussed further. 

Load-deflection behavior
A comparison of the load-deflection response of the beams is shown in Fig. 2 and 3. In these figures, the 

curve for beam BF3 is not shown as it almost exactly matches that of beam BF2. The recorded load-deflection 
curves clearly show the increase of the stiffness in the cracked state, proportional to the amount of FRP material. 
Also beam BF5, which is strengthened under full service load of the reference specimen, demonstrates a clear 
increase of flexural stiffness after strengthening (Fig. 2). A similar result is obtained for beam BF4, which was 
pre-cracked, unloaded and then strengthened (Fig. 3).

Further to the higher stiffness, a significant increase is obtained of the load at which the internal steel rein-
forcement starts yielding.

Cracking behavior
All beams started cracking at about the same load level Q

cr
 ≈ 18 kN [4.0 kips]. The mean crack widths of 

beams BF1, BF2, BF4, BF7, BF8 and BF9 are compared in Fig 4. From this figure, the restraining effect of the CFRP 
strengthening on the crack width is noted. For beams BF4 (which was pre-cracked) and BF9 (with a very low FRP 
reinforcement ratio), this restraining effect is rather limited. The favorable influence of FRP EBR on the cracking 
behavior is in agreement with the increased stiffness in the cracked state of the strengthened beams.

EXPERIMENTAL INVESTIGATION: TENSION STIFFENING

Outline of the experiments
A total of 18 concrete prisms with side length of 100 mm [3.9 in.] and total length of 1200 mm [47.2 in.] (1100 mm 

[43.3 in.] for batch T1), 14 of which strengthened with FRP EBR, were subjected to axial tension according to 
the test set-up shown in Fig. 5. Reinforcement ratios of the internal and external reinforcement, FRP type and 
concrete grade were considered as parameters. An overview of the different specimens, their designation and 
the corresponding test parameters are given in Table 3. The internal reinforcement consisted of a centrally located 
deformed steel bar S500, with a characteristic yield strength of 500 MPa [72,520 psi] and a diameter of either 
10, 14, or 16 mm [0.39, 0.55, or 0.63 in.]. The externally bonded reinforcement consisted of either CFRP sheets or 
GFRP fabrics. These were glued on two opposite faces of the concrete prism, impregnated and cured in-situ. For 
the CFRP, the Replark system (Replark Type 20 sheet/Epotherm Type XL 700 S epoxy) was used. The sheets have 
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a width of 100 mm [3.9 in.] and the nominal thickness of one layer equals 0.111 mm [0.0044 in.]. For the GFRP 
fabrics, Roviglas G (Roviglas G fabric/Multipox epoxy) was used, with a width of 100 mm [3.9 in.] and a nominal 
one layer thickness of 0.100 mm [0.0039 in.]. The properties of the reinforcement are given in Table 2. For the 
concrete, both a normal-strength concrete (NSC) and a high-strength concrete (HSC) with a mean compressive 
cylinder strength at 28 days of, respectively, 32.8 and 96.0 MPa [4757  and 13,925 psi] were used.

Application of the external FRP reinforcement was executed 7 days before testing and included roughening of 
the concrete surface by means of grinding.

The prisms were tested in a deformation controlled way (movement of the actuator 0.1 mm/min [0.0039 in./min] 
in the initial phase and 1 mm/min [0.039 in./min] after the steel started yielding). The tensile force was applied 
by gripping of the steel reinforcement. To prevent steel yielding outside the concrete prism, three steel reinforcing 
bars were provided in the gripping zone. These were embedded in the concrete prisms over a distance of 100 mm 
[3.9 in.], whereas only one internal bar was provided in the central zone. To account for local stresses at the prism 
ends, also confinement hoop reinforcement was provided over a distance of 150 mm [5.9 in.] (Fig. 5). For speci-
mens of batch T2 till T5, a mechanical anchorage was applied before testing. In this way the FRP bond failure at 
the prism ends, obtained for specimens T1, could be prevented. The anchorage device consists of tensile rods, 
transfer beams and steel plates glued on the FRP reinforcement as shown in Fig. 5. By pre-tensioning of the rods, 
a transverse compressive stress of about 3.5 MPa [508 psi] was applied on the ends of the external FRP reinforcement.

Concrete and FRP strains, crack development and crack widths were recorded during testing as a function of 
the applied load.

Main test results
Depending on the type and amount of externally bonded reinforcement and on the failure mode, strength 

increase between 1.3 and 3.0 was obtained. This is further discussed in Reference 2. In the following sections, 
the test results in terms of service behavior are discussed.

Mean tensile strain
The recorded tensile strains of some of the prisms are given in Figs. 6 and 7. In the latter figures, e

m
 represents 

the mean value of the strain measurements, located on both the concrete and the FRP (for the strengthened 
prisms). For most of the prisms, the mean strain measured on the FRP covered side face and the mean strain 
of the free concrete surface were not significantly different. The load-strain behavior is compared based on an 
equivalent reinforcement ratio ρ

eq
, defined as

100 mm [3.9 in] and the nominal thickness of one layer equals 0.111 mm [0.0044 in]. For the GFRP fabrics, 
Roviglas G (Roviglas G fabric/Multipox epoxy) was used, with a width of 100 mm [3.9 in] and a nominal one layer
thickness of 0.100 mm [0.0039 in]. The properties of the reinforcement are given in Table 2. For the concrete, both a 
normal (NSC) and a high strength concrete (HSC) with a mean compressive cylinder strength at 28 days of 
respectively 32.8 MPa [4757 psi] and 96.0 MPa [13925 psi] were used.
Application of the external FRP reinforcement was executed 7 days before testing and included roughening of the 
concrete surface by means of grinding.
The prisms were tested in a deformation controlled way (movement of the actuator 0.1 mm/min [0.0039 in/min] in 
the initial phase and 1 mm/min [0.039 in/min] after the steel started yielding). The tensile force was applied by 
gripping of the steel reinforcement. To prevent steel yielding outside the concrete prism, three steel reinforcing bars 
were provided in the gripping zone. These were embedded in the concrete prisms over a distance of 100 mm [3.9 
in], whereas only one internal bar was provided in the central zone. To account for local stresses at the prism ends, 
also confinement hoop reinforcement was provided over a distance of 150 mm [5.9 in] (Fig. 5). For specimens of 
batch T2 till T5, a mechanical anchorage was applied before testing. In this way the FRP bond failure at the prism 
ends, obtained for specimens T1, could be prevented. The anchorage device consists of tensile rods, transfer beams 
and steel plates glued on the FRP reinforcement as shown in Fig. 5. By pre-tensioning of the rods, a transverse 
compressive stress of about 3.5 MPa [508 psi] was applied on the ends of the external FRP reinforcement.
Concrete and FRP strains, crack development and crack widths were recorded during testing as a function of the 
applied load.
Main test results
Depending on the type and amount of externally bonded reinforcement and on the failure mode, strength increase
between 1.3 and 3.0 was obtained. This is further discussed in Matthys (2000)2. In the following sections, the test 
results in terms of service behavior are discussed.
Mean tensile strain
The recorded tensile strains of some of the prisms are given in Figs. 6 and 7. In the latter figures, εm represents the 
mean value of the strain measurements, located on both the concrete and the FRP (for the strengthened prisms). For 
most of the prisms, the mean strain measured on the FRP covered side face and the mean strain of the free concrete 
surface were not significantly different. The load-strain behavior is compared based on an equivalent reinforcement 
ratio ρeq, defined as:

f
s

f
seq E

E
ρρρ += [1]

with, ρr = Ar /Ac the reinforcement ratio (subscript s or f, for steel or FRP reinforcement, respectively), Ar and Ac the 
cross sectional area of the reinforcement and the concrete, and Er the modulus of elasticity of the reinforcement. 
Values of ρs, ρf and ρeq are given in Table 3.

Figure 6 compares strengthened prisms with the same amount of internal steel and with the same equivalent 
reinforcement ratio (about 1.83 %). The obtained curves are close to each other. A higher stiffness in the cracked 
state is obtained compared to the reference prism (ρs = 1.56 %). For the prism in HSC, the cracking load is higher.

In Fig. 7 the recorded deformations for strengthened prisms with increasing equivalent reinforcement ratio are 
shown. Higher stiffness in the cracked state is obtained with increasing equivalent reinforcement ratio. The slope of 
the last branch (stiffness in the cracked state after yielding of the steel) is almost the same for the three prisms with 
the same type and amount of external reinforcement, independent of the amount of internal steel reinforcement.
Prior to yielding of the internal steel, this is not the case as these specimens with same type and amount of external 
reinforcement have an increasing amount of internal steel reinforcement.

Crack pattern
In Figs. 8 and 9, the crack pattern at ultimate load, the mean crack width and the crack spacing are compared for 
prisms N(T4)/100/16/Ref. and N(T4)/100/16/C#1. From these figures, it is observed that the crack pattern is 
influenced by both the internal steel and the external FRP reinforcement. A smaller crack spacing is obtained for an 
increasing amount of reinforcement, where already a small amount of external FRP reinforcement reduces the crack 
spacing to a great extent. This corresponds with the observation made by several researchers9. The denser the crack 
spacing, the smaller the crack width.

ANALYTICAL VERIFICATION

with ρ
r
 = A

r 
/A

c
 the reinforcement ratio (subscript s or f, for steel or FRP reinforcement, respectively), A

r
 and A

c
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cross sectional area of the reinforcement and the concrete, and E
r
 the modulus of elasticity of the reinforcement. 

Values of ρ
s
, ρ

f
, and ρ

eq
 are given in Table 3. 

Figure 6 compares strengthened prisms with the same amount of internal steel and with the same equivalent 
reinforcement ratio (about 1.83 %). The obtained curves are close to each other. A higher stiffness in the cracked 
state is obtained compared to the reference prism (ρ

s
 = 1.56%). For the prism in HSC, the cracking load is higher.

In Fig. 7 the recorded deformations for strengthened prisms with increasing equivalent reinforcement ratio 
are shown. Higher stiffness in the cracked state is obtained with increasing equivalent reinforcement ratio. The 
slope of the last branch (stiffness in the cracked state after yielding of the steel) is almost the same for the three 
prisms with the same type and amount of external reinforcement, independent of the amount of internal steel 
reinforcement. Prior to yielding of the internal steel, this is not the case as these specimens with same type and 
amount of external reinforcement have an increasing amount of internal steel reinforcement.

Crack pattern
In Fig. 8 and 9, the crack pattern at ultimate load, the mean crack width and the crack spacing are compared 

for prisms N(T4)/100/16/Ref. and N(T4)/100/16/C#1. From these figures, it is observed that the crack pattern is 
influenced by both the internal steel and the external FRP reinforcement. A smaller crack spacing is obtained for 
an increasing amount of reinforcement, where already a small amount of external FRP reinforcement reduces the 
crack spacing to a great extent. This corresponds with the observation made by several researchers9. The denser 

(1)
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the crack spacing, the smaller the crack width.

ANALYTICAL VERIFICATION

Tension stiffening
The tension stiffening effect was verified by looking to the mean tensile strain of the prism subjected to tension. 

The load-strain behavior of these prisms is verified according to Eurocode 2 (2004)10, defining states 1 and 2 as 
the uncracked and fully cracked state, respectively. The mean tensile strain follows from

e
m

 = (1 – z)e
1
 + ze

2

with, x a distribution or tension stiffening coefficient defined as:

Tension stiffening
The tension stiffening effect was verified by looking to the mean tensile strain of the prism subjected to tension. The 
load-strain behavior of these prisms is verified according to Eurocode 2 (2004)10, defining states 1 and 2 as the 
uncracked and fully cracked state, respectively. The mean tensile strain follows from:
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with, ζ a distribution or tension stiffening coefficient defined as:
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where N is the applied tensile force, β is a coefficient taking into account the bond characteristics of the 
reinforcement and loading type (1 in case of deformed steel and short-term loading) and Ncr is the cracking load.
According to EC2 the power n equals 2. For HSC more accuracy is obtained11 with n equal to 3.

As it is difficult to separate the effects of the internal steel and the external FRP reinforcement, it is assumed for 
practical reasons that Eqs. 2 and 3 can be applied in the case of a combination of steel and FRP reinforcement. 
Accordingly, three branches in the load-strain curves are obtained. The first branch corresponds to state 1, in which 
the concrete is uncracked or εm = ε1: 

)/(1 ffsscc AEAEAEN ++=ε [4]

The second branch starts after cracking of the concrete and continues as long as the internal steel is not yielding. The 
term εm is calculated using Eqs. 2 to 4 with:

yffss AEAEN εεε ≤+= 22 )/( [5]

The third branch corresponds to yielding of the internal steel and the additional load increase is provided by the 
external reinforcement only. In this case the strain in the fully cracked state becomes: 

yffys AEfAN εεε >−= 22 /)( [6]

For the reference prisms, this third branch was assumed as horizontal. In the model, failure is reached at fracture of 
the FRP reinforcement, this is if ε2Ef equals the FRP tensile strength.

Although the bond behavior of FRP differs from that of steel, it is still assumed that β = 1 and n = 2 (3 for HSC) can
be adopted, as both materials exhibit good bond characteristics. As demonstrated in Fig. 10, this assumption gives a 
good agreement between experimental and analytical results. In this figure, in addition to the EC2 model (Eqs. 2 to
6), the model given in the CEB-FIP Model Code (1990)12 is also given.

A fairly accurate prediction is obtained for both models. The Eurocode 2 (EC2) model gives the best results, 
whereas the Model Code 1990 (MC90) model generally tends to overestimate the decrease of stiffness during crack 
formation and overestimates the stiffness at higher load levels. Further, it can be observed that the crack formation 
happens in a smoother way for the strengthened prisms than for the reference prisms, especially in the case of low 
reinforcement ratios. For the prisms with high strength concrete, the MC90 model significantly overestimates the 
tension stiffening effect. This is not the case for the EC2 model where a power n equal to 3 in stead of 2 was used 
for the tension stiffening coefficient.

Moment-curvature and moment-deflection behavior

where N is the applied tensile force, b is a coefficient taking into account the bond characteristics of the rein-
forcement and loading type (1 in case of deformed steel and short-term loading) and N

cr
 is the cracking load. 

According to EC2 the power n equals 2. For HSC more accuracy is obtained11 with n equal to 3.
As it is difficult to separate the effects of the internal steel and the external FRP reinforcement, it is assumed 

for practical reasons that Eqs. (2) and (3) can be applied in the case of a combination of steel and FRP reinforce-
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yielding. The term e
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The third branch corresponds to yielding of the internal steel and the additional load increase is provided by 
the external reinforcement only. In this case the strain in the fully cracked state becomes 
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For the reference prisms, this third branch was assumed as horizontal. In the model, failure is reached at fracture 
of the FRP reinforcement, this is if e

2
E

f
 equals the FRP tensile strength.

Although the bond behavior of FRP differs from that of steel, it is still assumed that b = 1 and n = 2 (3 for HSC) 
can be adopted, as both materials exhibit good bond characteristics. As demonstrated in Fig. 10, this assumption 
gives a good agreement between experimental and analytical results. In this figure, in addition to the EC2 model 
(Eq. (2) to (6)), the model given in the CEB-FIP Model Code (1990)12 is also given.

A fairly accurate prediction is obtained for both models. The Eurocode 2 (EC2) model gives the best results, 
whereas the Model Code 1990 (MC90) model generally tends to overestimate the decrease of stiffness during 
crack formation and overestimates the stiffness at higher load levels. Further, it can be observed that the crack 
formation happens in a smoother way for the strengthened prisms than for the reference prisms, especially in 
the case of low reinforcement ratios. For the prisms with high strength concrete, the MC90 model significantly 
overestimates the tension stiffening effect. This is not the case for the EC2 model where a power n equal to 3 
instead of 2 was used for the tension stiffening coefficient.

Moment-curvature and moment-deflection behavior
To verify the beam deflections, the load-curvature behavior at midspan was evaluated first. In addition, the 

tension stiffening approach discussed in the previous section is utilized. Considering states 1 and 2 as the 

(2)

(3)

(4)
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(6)
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uncracked and the fully cracked state respectively, the mean curvature 1/r follows10 similar to Eq. (2) as

1/r = (1 – z)1/r
1
 +z1/r

2

with the tension stiffening coefficient

In order to verify the beam deflections, the load-curvature behavior at midspan was evaluated first. In addition, the 
tension stiffening approach discussed in the previous section is utilized. Considering states 1 and 2 as the uncracked 
and the fully cracked state respectively, the mean curvature 1/r follows10 similar to Eq. 2 as:
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According to theory of elasticity, the curvatures 1/r1 and 1/r2 follow from:
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with, I1 and I2 the moments of inertia of the uncracked and cracked section, respectively. The moment of inertia 
depends on the dimensions of the beam cross-section, the depth of the compression zone, the amount of 
reinforcement and the stiffness of the reinforcement. Applying equilibrium of forces, it appears that the depth of the 
compression zone depends on the ratio εo /εc (εo is the initial strain at the extreme tension fiber before strengthening 
and εc the concrete strain at the extreme compression fiber). As this ratio is not constant, the moment of inertia 
depends on the acting load level. However, it was verified that the influence of εo/εc on the calculation is limited 
(e.g. for the beams in this test program, I2 varied with 0.2 % maximum) so that εo/εc may be assumed 0.

The above equations are valid for strengthened and unstrengthened members. In reality, to account for the moment 
at which the strengthening is applied, a combination of both should be considered. Accordingly, the curvature in the 
cracked state is given as:
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where, Io is the moment of inertia before strengthening. The curvature 1/r1 may be calculated in a similar way.
However, as Io1 ≈ I1, Eq. 9 may still be applied.

Furthermore, it is noted that the flexural stiffness EcI2 becomes difficult to evaluate after the internal steel starts 
yielding. To allow the calculation of the curvature for moments larger than My and to increase the accuracy, in stead 
of a linear elastic analysis the curvature in the cracked state can also be calculated based on a non-linear analysis: 

x
r cε=2/1 [11]

where, the concrete strain εc at the extreme compression fiber and the depth x of the compression zone are obtained 
following equilibrium of forces and moments.

The moment-curvature behavior of the beams was verified according to the above two methods: linear and non-
linear, taking into account the tension stiffening. The calculation of the cracking moment Mcr is based13 on a 
concrete tensile strength fcm:

cmcr ff 62.0= [12]

According to theory of elasticity, the curvatures 1/r
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compression zone depends on the ratio εo /εc (εo is the initial strain at the extreme tension fiber before strengthening 
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However, as Io1 ≈ I1, Eq. 9 may still be applied.

Furthermore, it is noted that the flexural stiffness EcI2 becomes difficult to evaluate after the internal steel starts 
yielding. To allow the calculation of the curvature for moments larger than My and to increase the accuracy, in stead 
of a linear elastic analysis the curvature in the cracked state can also be calculated based on a non-linear analysis: 
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where, the concrete strain εc at the extreme compression fiber and the depth x of the compression zone are obtained 
following equilibrium of forces and moments.

The moment-curvature behavior of the beams was verified according to the above two methods: linear and non-
linear, taking into account the tension stiffening. The calculation of the cracking moment Mcr is based13 on a 
concrete tensile strength fcm:

cmcr ff 62.0= [12]

where, the concrete strain e
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 at the extreme compression fiber and the depth x of the compression zone are 

obtained following equilibrium of forces and moments.
The moment-curvature behavior of the beams was verified according to the above two methods: linear and 

non-linear, taking into account the tension stiffening. The calculation of the cracking moment M
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concrete tensile strength f
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 in psi]. Results of the calculation are given in 
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The moment-deflection behavior can be predicted by integration of the curvature along the beam length. 
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Results are shown in Fig. 12. The midspan deflection has been calculated based on the method of virtual work. As 
an alternative, which is more simple to calculate, the mean deflection can be derived according to the so-called 
CEB (Comité Euro-International du Béton) bilinear method14
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with, fcr and fcm in MPa [replace 0.62 by 7.5 in Eq. 12, using fcr and fcm in psi]. Results of the calculation are given in 
Fig. 11. Both methods almost match each other (for M < My) and give reasonably accurate predictions.

The moment-deflection behavior can be predicted by integration of the curvature along the beam length. Results are 
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(Comité Euro-International du Béton) bilinear method14:
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Note, that in the bilinear method the tension stiffening approach is directly applied on the deflections in uncracked 
and fully cracked state obtained by the theory of elasticity, whereas the tension stiffening coefficient is adapted to 
this approach (power n in Eq. 8 versus power n/2 in Eq. 14). Whereas the bilinear method is simpler, it appears to 
slightly underestimate the deflection (right part of Fig. 12).

Cracking
Based on the tension stiffening tests, different approaches for the modelling of the crack width have been verified by 
Matthys (2000)2 and the best predictions are obtained with a model based on MC9012, which considers the bond 
behaviour of both the internal and external reinforcement. The derived model for strengthened tension members is 
also applicable to strengthened flexural members. Assuming stabilized cracking, the mean crack width is given2 by:
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with, srm the mean crack spacing, εrm,r the mean strain of the reinforcement with respect to the surrounding concrete, 
ζ the tension stiffening coefficient according to Eq. 8, and εr2 the reinforcement strain in the cracked section. The 
mean crack spacing for the strengthened members is given2,12,15 as:
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where, τsm = 1.8fctm and τfm = 1.25fctm are the mean bond stress of the steel12 and the FRP16, us is the bond perimeter 
of the steel, ξb a bond parameter and t is the FRP thickness (total thickness for multiple layers).

Results of the analytical verification of the mean crack width are shown in Fig. 13 for some of the specimens. Fairly 
accurate predictions are obtained. As the models for the calculation of the crack width are intended to be used at 
service load level, the accuracy at higher load levels is generally less.

SUMMARY AND CONCLUSIONS

In the case of FRP strengthened members, and depending on the amount and stiffness of the additional 
reinforcement, an improved serviceability behaviour will be obtained due to the following favourable aspects:

• The addition of external reinforcement causes an increase of the moment of inertia of the cracked section.
• After cracking, the tension forces in a cracked section are only balanced by the reinforcement. However, 

tension forces are transmitted to the surrounding concrete in between adjacent cracks by bond forces. This 
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where, τsm = 1.8fctm and τfm = 1.25fctm are the mean bond stress of the steel12 and the FRP16, us is the bond perimeter 
of the steel, ξb a bond parameter and t is the FRP thickness (total thickness for multiple layers).

Results of the analytical verification of the mean crack width are shown in Fig. 13 for some of the specimens. Fairly 
accurate predictions are obtained. As the models for the calculation of the crack width are intended to be used at 
service load level, the accuracy at higher load levels is generally less.

SUMMARY AND CONCLUSIONS

In the case of FRP strengthened members, and depending on the amount and stiffness of the additional 
reinforcement, an improved serviceability behaviour will be obtained due to the following favourable aspects:

• The addition of external reinforcement causes an increase of the moment of inertia of the cracked section.
• After cracking, the tension forces in a cracked section are only balanced by the reinforcement. However, 

tension forces are transmitted to the surrounding concrete in between adjacent cracks by bond forces. This 
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Results of the analytical verification of the mean crack width are shown in Fig. 13 for some of the specimens. 
Fairly accurate predictions are obtained. As the models for the calculation of the crack width are intended to be 
used at service load level, the accuracy at higher load levels is generally less.

SUMMARY AND CONCLUSIONS

In the case of FRP strengthened members, and depending on the amount and stiffness of the additional rein-
forcement, an improved serviceability behaviour will be obtained due to the following favorable aspects:

• The addition of external reinforcement causes an increase of the moment of inertia of the cracked section.
• After cracking, the tension forces in a cracked section are only balanced by the reinforcement. However, 

tension forces are transmitted to the surrounding concrete in between adjacent cracks by bond forces. 
This contributes to the stiffness in the cracked state (‘tension stiffening effect’). Both the internal and 
external reinforcement will contribute to the tension stiffening effect, due to their capability of transferring 
bond forces.

• As the external reinforcement relieves some of the tensile stresses carried by the internal steel reinforce-
ment, the bar strains and hence the crack widths are reduced for a given load level.

• The external reinforcement is bridging the cracks, causing an external restraining effect which results in 

(13)

(14)

(15)

(16)

https://www.civilenghub.com/ACI/132626434/ACI-SP-264?src=spdf


102 Matthys and Taerwe

denser crack spacing and smaller crack widths.
Because already small amounts of FRP increase the failure load to a large extent, the efficiency with respect to 

the SLS is generally less than that with respect to the ultimate limit state (ULS).
The magnitude of the stiffness in the cracked state strongly depends on the equivalent reinforcement ratio, 

hence on both the amount and stiffness of the reinforcements. The stiffness in the cracked state after yielding of 
the internal steel mainly depends on the amount and type of external FRP reinforcement.

Considerably smaller crack spacing and crack widths are obtained for the strengthened prisms. Also, the crack 
formation happens in a smoother way compared to unstrengthened specimens.

The behaviour of the strengthened elements in terms of mean strains, curvatures, deflections, taking into 
account the tension stiffening effect, can be predicted in an accurate way. Fairly accurate predictions are also 
obtained with respect to cracking, though further improvement of models for cracking predictions may be needed.
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Table 1—Test parameters RC beams strengthened in flexure

Spec. Type of strengthening
Age at 
test,
days

f
cm

,
  
MPa (psi) ρ

s
,

 
% ρ

f
,

 
%

Pre-loading,
kN (kips)

Load during
strengthening,

kN (kips)

BF1 Unstrength. (ref.) 56 33.7 (4888) 0.96 — — Self weight

BF2 Strengthened(1) 56 36.5 (5294) 0.96 0.14 — Self weight

BF3 Strengthened(1) 56 34.9 (5062) 0.96 0.14 — Self weight

BF4 Pre-cracked/strength.(1) 61 30.8 (4467) 0.96 0.14 110 (24.7) Self weight

BF5 Strength.(1) while loaded 65 37.4 (5424) 0.96 0.14 110 (24.7) 110 (24.7)

BF6 Strength.(1) & anchored(2) 72 35.9 (5207) 0.96 0.14 — Self weight

BF7 Unstrength. (ref.) 105 38.5 (5584) 0.48 — — Self weight

BF8 Strengthened(1) 107 39.4 (5714) 0.48 0.14 — Self weight

BF9 Strengthened(3) 59 33.7 (4888) 0.48 0.026 — Self weight

(1) CarboDur 100 mm x 1.2 mm.
(2) Replark 330 mm x 0.111 mm.
(3) 2 layers Replark 100 mm.
Note: 1 mm = 0.03937 in.

Table 2—Mean properties obtained by tensile testing

Type
Nominal  

dimensions, mm (in.)
Yield strength,

MPa (psi)
Tensile strength,

MPa (psi)
Ultimate
strain, %

E-modulus,
GPa (ksi)

Rebar S500
Ø 10 (0.39)
Ø 14 (0.55)
Ø 16 (0.63)

590 (85570)
550 (79770)
590 (85570)

670 (97175)
630 (91375)

690 (100075)

nm
nm

12.4
200 (29010)

CarboDur
S1012

100 × 1.2(1)

(3.94 × 0.047)
—

3200
(464120)

1.85 159 (23060) (3)

Replark
MRK-M2-20

100 × 0.111(2)

(3.94 × 0.0044)
—

3500
(507630)

1.25 233 (33795) (3)

Roviglas G
100 × 0.100(2)

(3.94 × 0.0044)
—

1300
(188550)

2.07 57 (8265) (3)

(1) Global thickness.
2) Equivalent dry-fiber thickness.
(3) Tangent modulus at the origin.
Note: nm = not measured
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Table 3—Test parameters of the tension stiffening tests

Batch Specimen
Age

at test
f

cm
,

MPa (psi)
Steel
reinf.

ρ
s
, % FRP type

FRP
layers

ρ
f
, % ρ

eq
, %

T1

N(T1)/100/14/Ref. 28
36.2

(5250)

Ø 14 (0.55) 1.56 — — — —

N(T1)/100/14/C#1 29 Ø 14 (0.55) 1.56 CFRP 1 0.23 1.82

N(T1)/100/14/C#2 29 Ø 14 (0.55) 1.56 CFRP 2 0.45 2.08

T2

N(T2)/100/14/C#1 36
32.3

(4685)

Ø 14 (0.55) 1.56 CFRP 1 0.23 1.82

N(T2)/100/14/G#2 28 Ø 14 (0.55) 1.56 GFRP 2 0.41 1.68

N(T2)/100/14/G#5 29 Ø 14 (0.55) 1.56 GFRP 5 1.02 1.85

T3

N(T3)/100/10/Ref. 27

32.5
(4714)

Ø 10 (0.39) 0.79 — — — —

N(T3)/100/10/C#1 28 Ø 10 (0.39) 0.79 CFRP 1 0.22 1.05

N(T3)/100/10/G#5 28 Ø 10 (0.39) 0.79 GFRP 5 1.01 1.08

N(T3)/100/10/C#4 29 Ø 10 (0.39) 0.79 CFRP 4 0.90 1.82

T4

N(T4)/100/16/Ref. 28

30.3
(4395)

Ø 16 (0.63) 2.05 — — — —

N(T4)/100/16/C#1 28 Ø 16 (0.63) 2.05 CFRP 1 0.23 2.31

N(T4)/100/16/G#5 29 Ø 16 (0.63) 2.05 GFRP 5 1.02 2.34

N(T4)/100/14/C#3 29 Ø 14 (0.55) 1.56 CFRP 3 0.68 2.34

T5

H(T5)/100/14/Ref. 27

96.0
(13924)

Ø 14 (0.55) 1.56 — — — —

H(T5)/100/14/C#1 27 Ø 14 (0.55) 1.56 CFRP 1 0.23 1.82

H(T5)/100/14/G#2 28 Ø 14 (0.55) 1.56 GFRP 2 0.41 1.68

H(T5)/100/14/G#3 28 Ø 14 (0.55) 1.56 GFRP 3 0.61 1.74

Fig. 1—Test setup and specimen dimensions. (Note: 1 mm = 0.03937 in.)

https://www.civilenghub.com/ACI/132626434/ACI-SP-264?src=spdf
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Fig. 2—Load-deflection behavior of Beams BF1,2,5,6,7-9. (Note: 1 kN = 0.2248 kips; 1 mm = 0.03937 in.)

Fig. 3—Load-deflection behavior of Beams BF1,2,4. (Note: 1 kN = 0.2248 kips; 1 mm = 0.03937 in.)

https://www.civilenghub.com/ACI/132626434/ACI-SP-264?src=spdf
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