Retaining Walls

	1	
22.2.2.3	Determine the equivalent concrete compressive stress for design. The concrete compressive stress distribution is inelastic at high stress. The actual distribution of concrete compressive stress is complex and usually not known explicitly. The Code permits any stress distribution to be assumed in design if shown to re- sult in predictions of nominal strength in reasonable agreement with the results of comprehensive tests. Rather than tests, the Code allows the use of an equivalent rectangular compressive stress distribu- tion of $0.85f_c'$ with a depth of: $a = \beta_1 c$, where β_1 is a function of concrete compres- sive strength and is obtained from Table 22.2.2.4.3.	
22.2.2.4.3	For $f_c' \leq 4500$ psi	$\beta_1 = 0.85 - \frac{0.05(4500 \text{ psi} - 4000 \text{ psi})}{1000 \text{ psi}} = 0.825$
22.2.1.1	Find the equivalent concrete compressive depth, a , by equating the compression force and the tension force within a unit length of the wall cross section: C = T	
	$C = 0.85 f_c' ba$ and $T = A_s f_y$	$0.85(4500 \text{ psi})(12 \text{ in.})(a) = A_s(60,000 \text{ psi})$ $a = \frac{A_s(60,000 \text{ psi})}{0.85(4500 \text{ psi})(12 \text{ in.})} = 1.31A_s$
	Calculate required reinforcement area:	Equating design moment strength and required mo- ment strength, A_s is:
7.5.2.1 22.3	$M_n = A_s f_y \left(d - \frac{a}{2} \right)$	$M_n = (60,000 \text{ psi})A_s \left(7.68 \text{ in.} -\frac{1.31A_s}{2}\right)$
21.2.1	Use flexure strength reduction factor:	$\phi = 0.9$
20.5.1.3.1	Assume No. 5 vertical reinforcement:	
	$d = t_{stem} - \text{cover} - d_b/2$ use 2 in. cover	d = 10 in. -2 in. -0.625 in. $/2 = 7.68$ in.
7.5.1.1	Substituting into: $\phi M_n \ge M_u$	$aaaaaaaaaaaaaaaaaa -\frac{1.31A_s}{2}$
	M_u = 82.3 inkip calculated above. Solving for A_s (refer to Fig. E6.4):	$A_s = 0.20 \text{ in.}^2$ No. 5 at 12 in. on center. $A_{s,prov'd} = 0.31 \text{ in.}^2/\text{ft} > A_{s,req'd} = 0.2 \text{ in.}^2/\text{ft}$

This is a preview. Click here to purchase the full publication.

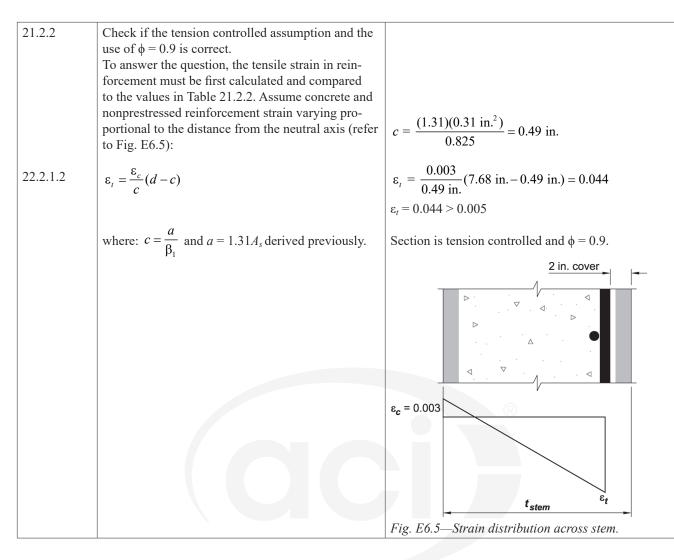
136	ACI REINFORCED CONCRETE DESIGN	N HANDBOOK—MNL-17(21)
7.7.2.2 24.3.2	To provide adequate crack control, limit spacing of the vertical bars for out-of-plane bending according to Table 24.3.2. To maximize bar spacing, calculate unfactored stress in bars (f_s) using the selected 12 in. spacing of the No. 5 bars. Use the following working stress equations:	
	$n = E_s/E_c$ $k = -n\frac{A_s}{bd} + \sqrt{n^2 \left(\frac{A_s}{bd}\right)^2 + 2n\frac{A_s}{bd}}$ $j = 1 - \frac{k}{3}$ $f_s = \frac{M_s}{jdA_s}$	$E_{c} = 57,000\sqrt{4500} \text{ psi} = 3824 \text{ ksi} \text{Use } 3820 \text{ ksi}$ $n = \frac{29,000 \text{ ksi}}{3820 \text{ ksi}} = 7.6$ $A_{s} = \frac{12 \text{ in.}}{12 \text{ in.}} 0.31 \text{ in.}^{2} = 0.31 \text{ in.}^{2}$ $\frac{A_{s}}{bd} = \frac{0.31 \text{ in.}^{2}}{12 \text{ in.}(7.68 \text{ in.})} = 0.00336$ $k = -7.6(0.00336) + \sqrt{(7.6)^{2}(0.00336)^{2} + 2(7.6)(0.00336)}$ $k = 0.202$ $j = 1 - \frac{0.202}{3} = 0.933$
		Compute service moment at base of stem from previously calculated factored moment: $M_s = 6860 \text{ ft lb}/1.6 = 4287 \text{ ft lb}$ $f_s = \frac{4290 \text{ ft lb}}{0.933(7.68 \text{ in.})(0.31 \text{ in.}^2)} = 23,176 \text{ psi}$ 15(40,000 psi/23,200 psi) in. - 2.5(2 in.) = 20.9 in. 12(40,000 psi/23,200 psi) in. = 20.7 in. Controls
7.7.2.3	Maximum bar spacing is limited to 3 <i>h</i> or 18 in.	3(12 in.) = 36 in. No more than 18 in. 12 in spacing is less than 18 in. OK
7.6.1.1	Provide minimum reinforcement according to Code Chapter 7. This reinforcement should be placed as	minimum ratio on gross section = 0.0018

close as practicable to the tension face.

136

(aci)

This is a preview. Click here to purchase the full publication.


Vertical bars on soil face:

Use No. 5 vert. @ 12 in. = 0.31 in.^2

OK

 $0.0018(12 \text{ in.})(10 \text{ in.}) = 0.216 \text{ in.}^2 < A_{s,prov} = 0.31 \text{ in.}^2$

7.6.4.1 24.4	For horizontal reinforcement and vertical reinforce- ment on outside face use minimum shrinkage and temperature reinforcement in accordance with Code Section 24.4	
24.4.3.2	Minimum shrinkage and temperature reinforce- ment is 0.0018 of gross concrete area. Divide this amount equally between the two faces.	$\frac{0.0018(12 \text{ in.})(10 \text{ in.})}{2} = 0.108 \text{ in.}^2 \text{ in each face}$
24.4.3.3	Bar spacing should not exceed 5 <i>h</i> or 18 in.	5(10 in.) = 50 in. 18 in. controls No. 4 bars at 18 in. o/c: $A_s = (12 \text{ in.}/18 \text{ in.})0.2 \text{ in.}^2 = 0.133 \text{ in.}^2$ Use No. 4 horiz. @ 18 in. each face = 0.13 in. ² + 0.13 in. ² = 0.26 in. ² and No. 4 vert. @ 12 in. in outside face = 0.2 in. ² > 0.108 in. ² The designer should consider increasing horizontal re- inforcement or introducing vertical contraction joints, or both to control formation of vertical cracks due to to shrinkage and temperature effects.
		ACI 224.3R-95, ACI 224.4R-13, ACI 315R-18 are good resources for detailing joints in wall construc- tion. If resistance to water penetration is desired, then ACI 350 and ACI 350.4R may also be of use.

Retaining Walls

	Lap splice length with dowels	
	Dowels must extend above the critical section (in- terface between stem and footing) by the lap splice length, which is a function of straight bar develop- ment length. Determine the development length of the No. 5 dowel.	
25.4.2.1	Determine required development length for No. 5 bars using detailed formula from 25.4.2.1	$d_b = 0.625$ in. Diameter of No. 5 bar $K_{tr} = 0$ No transverse reinforcement present
25.4.2.4a	$\ell_{d} \geq \left[\frac{3}{40} \frac{f_{y}}{\sqrt{f_{c}'}} \frac{\Psi_{t} \Psi_{e} \Psi_{s} \Psi_{g}}{\left(\frac{c_{b} + K_{tr}}{d_{b}}\right)}\right] d_{b}$	$c_b = 2.3$ in. Least of cover to center of bar or one- half center-to-center bar spacing. Consider stem reinf.
	$(c_b + K_{tr})/d_b \le 2.5$ $K_{tr} = 40A_{tr}/sn$	(2.3 in. + 0)/0.625 in. = 3.68 Use a value no more than 2.5.
25.4.2.4b 25.4.2.1(b)	$K_{tr} = 40A_{tr}/sn$ $\ell_d \ge 12 \text{ in.}$	Bars are cast with less than 12 in. of fresh concrete below the bars.
25.4.2.5	ψ_t – Casting position ψ_e – Epoxy coating ψ_s – Bar size	$\psi_t = 1.0$ Bars are uncoated. $\psi_e = 1.0$
	ψ_g – Reinforcement grade	Bars are No. 5 (No. 6 and smaller) $\psi_s = 0.8$ Bars are Grade 60. $\psi_g = 1.0$
		Required development length for No. 5: $\frac{3}{40} \frac{(60,000 \text{ psi})}{[(1.0)\sqrt{4500} \text{ psi}]} \frac{(1.0)(1.0)(0.8)(1.0)}{2.5} 0.625 \text{ in.} = 13.4 \text{ in.}$
25.5.2.1	Lap splice length type is based on the ratio of the provided area of steel to required area of steel and the maximum percentage of steel spliced within the lap splice length. Use Table 25.5.2.1 to determine	Use development length of 1 ft 2 in. minimum.
	required lap splice length.	$A_{s,provided} A_{s,required} < 2.0$ Max A_s spliced = 100%
		All bars are spliced at the critical section, which is located at the base of the wall.
		Class B splice is required regardless of area of steel spliced
		Lap splice length = $1.3(13.4 \text{ in.}) = 17.5 \text{ in.}$
		Use lap splice length of 1 ft 6 in.

This is a preview. Click here to purchase the full publication.

	Shear	
11.5.5	Out-of-plane shear is checked in accordance with Code Section 22.5 (similar to one-way slabs).	$h_{stem} = h - t_{base} = 10.5 \text{ ft} - 1.25 \text{ ft} = 9.25 \text{ ft}$ $V_u = 1.6(32.5 \text{ pcf})(9.25 \text{ ft})(9.25 \text{ ft}/2) = 2225 \text{ lb} \sim 2.3 \text{ kip}$
22.5.5.1c	Use appropriate equation from Table 22.5.5.1c $V_{c} = \left[8\lambda_{s}\lambda(\rho_{w})^{1/3}\sqrt{f_{c}'} + \frac{N_{u}}{6A_{g}} \right] b_{w}d$	
21.2.1	Strength reduction factor for shear from Table 21.2.1b	$\phi = 0.75$
	Effective depth to centroid of reinforcement	d = 7.68 in.
	Use No. 5 at 12 in. spacing, which is the flexural reinforcement for out-of-plane bending. Area of steel per foot of width.	$A_s = (12 \text{ in.}/12 \text{ in.})0.31 \text{ in.}^2 = 0.31 \text{ in.}^2$
	Unit slab width of 12 in.	$b_w = 12$ in.
2.2	Reinforcement ratio of flexural reinforcement rela- tive to a unit width of 12 in.	
	$\rho_w = A_s/b_w d$	$ \rho_w = \frac{0.31 \text{ in.}^2}{12 \text{ in.}(7.68 \text{ in.})} = 0.00336 $
	Assume that axial load is zero.	$N_u = 0$
22.5.5.1.3	Size effect factor.	
	$\lambda_s = \sqrt{\frac{2}{1+0.1d}}$	$\lambda_s = \sqrt{\frac{2}{1+0.1(7.68)}} = 1.064$ use 1.0
		$\lambda = 1.0$
		$V_c = 8(1.0)(1.0)(0.00336)^{1/3}\sqrt{4500} \text{ psi}(12 \text{ in.})(7.68 \text{ in.})$ $V_c = 7.41 \text{ kip}$
		$\phi V_c = 0.75(7.41 \text{ kip}) = 5.56 \text{ kip} > V_u = 2.3 \text{ kip}$ OK
		Design shear strength from concrete contribution exceeds the factored shear. Wall thickness is adequate for out-of-plane shear.

Retaining Walls

Step 8: Heel o	design	
	Shear	Critical section for shear and moment
13.3.6.3 7.4.3.2 9.4.3.2	The Code indicates that the critical section for both shear and moment in the stem is located at the in- terface between the stem and footing. This is due to the opening moment that is applied. Although not specifically addressed in the foundations chapter of the Code, the heel of the footing has an opening moment that is applied to it as well, which will then result in a diagonal crack through the joint. Thus, the critical section for both shear and moment should be located at the face of the stem wall as shown in Fig. E6.6. Check shear strength of foot- ing without shear reinforcement to ensure that the footing has adequate thickness. Ignore contribution of upward soil pressure due to the uncertainty of its distribution	$y_{s}h_{a}$ $q_{max} \qquad \qquad$
7.5.3.1	Out-of-plane shear is to be checked in accordance with Code Section 22.5 (similar to one-way slabs).	
22.5.5.1c	Use appropriate equation from Table 22.5.5.1c $V_{c} = \left[8\lambda_{s}\lambda(\rho_{w})^{1/3}\sqrt{f_{c}'} + \frac{N_{u}}{6A_{g}} \right] b_{w}d$	8
21.2.1	Strength reduction factor for shear from Table 21.2.1b. Effective depth to centroid of reinforcement assuming No. 6 bar. Try No. 6 at 6 in. spacing, which is a multiple of the stem bar spacing. This spacing will allow the stem wall dowels to be tied to alternate top footing bars, which will simplify inspection and placement. This quantity of reinforcement is well beyond what will be required for flexure, but provides improved	φ = 0.75 d = 15 in 12 in 0.5(0.625 in.) = 12.69 in.
2.2	shear performance to avoid an excessively thick footing. Reinforcement ratio of flexural reinforcement rela- tive to the slab unit width of 12 in.	$A_s = (12 \text{ in.}/6 \text{ in.})(0.44 \text{ in.}^2) = 0.88 \text{ in.}^2$ $b_w = 12 \text{ in.}$
	$\rho_w = A_s/b_w d$ Assume that axial load is zero.	$\rho_w = \frac{0.88 \text{ in.}^2}{12 \text{ in.}(12.69 \text{ in.})} = 0.00578$ $N_u = 0$
13.2.6.2 22.5.5.1.3	Size effect factor can be neglected.	$λ_s = 1.0$ $λ_s = 1.0$ $V_c = 8(1.0)(1.0)(0.00578)^{1/3}\sqrt{4500} \text{ psi}(12 \text{ in.})(12.69 \text{ in.})$ $V_c = 14.67 \text{ kip}$ $φV_c = 0.75(14.6 \text{ kip}) = 11.0 \text{ kip} > V_u = 9.7 \text{ kip}$ OK Use No. 6 at 6 in. spacing in top of footing.

This is a preview. Click here to purchase the full publication.

	<u>Flexure</u> The heel is subject to flexure caused by the	
	superimposed weight of soil and self-weight of	
	heel. The soil pressure counteracting the applied gravity loads is neglected as the soil pressure	
	may not be linear as assumed. Therefore, it is not	
	included in the calculation of flexure.	
6.6.1.2	The cantilever retaining wall maximum moment and	
	shear in the heel and toe of the base occur at the stem	
	face. Redistribution of moments cannot occur.	
5.3.1	A load factor of 1.2 is used for the concrete self-	$M_{u1} = 1.2(150 \text{ pcf})(1.25 \text{ ft})(4.84 \text{ ft})^2/2$
5.3.8	weight and 1.6 for soil backfill.	+ 1.6(120 pcf)(9.25 ft)(4.84 ft) ² /2 = (2634 ft-lb) + (20,802 ft-lb)
		$= 23,347 \text{ ft-lb} \approx 281,000 \text{ inlb}$
22.2.1.1	Setting $C = T$	$0.85(4500 \text{ psi})(12 \text{ in.})(a) = A_s(60,000 \text{ psi})$
		$a = \frac{A_s(60,000 \text{ psi})}{0.85(4500 \text{ psi})(12 \text{ in.})} = 1.31A_s$
		0.85(4500 psi)(12 in.)
7.5.2.1	$M_n = f_y A_s \left(d - \frac{a}{2} \right)$	$M_n = (60,000 \text{ psi})A_s \left(12.69 \text{ in.} -\frac{1.31A_s}{2}\right)$
7.3.2.1	$m_n = f_y m_s \begin{pmatrix} u \\ 2 \end{pmatrix}$	$\prod_{n} (00,000 \text{ ps}) \prod_{s} (1000 \text{ m} 2)$
		8
21.2.1	Strength reduction factor for flexure:	$\phi = 0.9$
7.5.1.1	$\phi M_n \ge M_u$	$0.9(60 \text{ ksi})A_s \left(12.69 \text{ in.} -\frac{1.31A_s}{2}\right) \ge 281 \text{ inkip}$
	$M_u = 281$ inkip, calculated above.	
	Solving for A_s :	$A_s = 0.42 \text{ in.}^2$

13.3.2.1	Design footing according to the applicable provisions of Code Chapters 7 and 9.	Lesser of:
7.7.2.2 24.3.2	To provide adequate crack control, limit spacing of the primary bars for out-of-plane bending according to Table 24.3.2.	15(40,000/40,000) in. – 2.5(2 in.) = 10 in. controls 12(40,000/40,000) in. = 12 in.
7.7.2.3	Maximum bar spacing is limited to 3 <i>h</i> or 18 in.	3(15 in.) = 45 in. No more than 18 in. Limit bar spacing to 10 in.
7.6.1.1	Provide minimum flexural reinforcement according	minimum flexural reinforcement ratio = 0.0018
	to Code Chapter 7. This reinforcement should be placed as close as practicable to the tension face.	0.0018(12 in.)(15 in.) = 0.324 in. ²
		Shear strength controls area of reinforcement required. Use No. 6 bars at 6 in. spacing.
		$A_{s,prov'd} = 0.88 \text{ in.}^2 > A_{s,min} = 0.324 \text{ in.}^2$ > $A_{s,req'd} = 0.42 \text{ in.}^2$ OK
7.6.4.1 24.4	For footing longitudinal reinforcement, provide minimum shrinkage and temperature reinforcement in accordance with Code Section 24.4.	
24.4.3.2	Minimum shrinkage and temperature reinforcement is 0.0018 of gross concrete area.	® 0.0018(15 in.)(5.67 ft) 12 in./ft = 1.8 in. ²
24.4.3.3	Bar spacing should not exceed 5h or 18 in.	5(15 in.) = 75 in. No more than 18 in.
		1.8 in. ² /0.31 in. ² = 5.806 Use seven No. 5 bars dis- tributed in top and bottom of footing. $A_{s,prov} = 7(0.31 \text{ in.}^2) = 2.17 \text{ in.}^2$
21.2.2	Check if the tension controlled assumption and the use of $\phi = 0.9$ is correct.	Suprov ()
	To answer the question, the tensile strain in reinforcement must be first calculated and compared to the values in Table 21.2.2. Concrete and nonprestressed reinforcement strain is assumed to vary proportionally from the neutral axis. From similar triangles (refer to Fig. E6.5):	$c = \frac{(1.31)(0.88 \text{ in.}^2)}{0.825} = 1.40 \text{ in.}$
	$\varepsilon_t = \frac{\varepsilon_c}{c} (d-c)$	$\varepsilon_r = \frac{0.003}{0.49 \text{ in.}} (12.69 \text{ in.} - 1.40 \text{ in.}) = 0.024$
	where: $c = \frac{a}{\beta_1}$ and $a = 1.31A_s$ derived previously.	$\varepsilon_t = 0.024 > 0.005$
	β_1	Section is tension controlled and $\phi = 0.9$.

-	em-footing joint detailing Eliminating the footing toe due to the proxim-	
	ity of the property line makes development of the	
	reinforcement and maintaining stability of the joint	
	more difficult because the heel and stem reinforce-	
	ment must be developed within the bounds of the	
	joint region. Code Chapter 15 covers beam-column	
	joints, but does not directly address wall-slab	
	joints where the use of transverse reinforcement is	
	impractical.	
	The joint geometry restricts the use of 90-degree	
	hooks in favor of 180-deg hooks or headed bars. In	
	addition, for a conventional layout of reinforcement	
	(Fig. E6.7(a)), experimental work has shown that	
	opening moments applied to the corner joint can re-	
	sult in a flexural strength that is less than predicted	
	by the sectional model for both the stem and heel	
	reinforcement at the critical section (Nilsson and	
	Losberg 1976).	
	Campana et al. (2013) compiled results of tests on	
	90-deg. corner joints that used varying configu-	
	rations of reinforcement detailing to control the	R
	joint opening stresses and to ensure that the joint	
	remained stable up to and beyond the calculated	
	moment strength of the joint. Some of the joint	
	reinforcement detailing found to be relatively more	
	effective resisting opening moments, however,	
	would also be challenging to fabricate and place.	
	Based on the previously cited references, one of	
	the more effective corner joint details is shown in	
	Fig. E6.7(b). The primary reinforcement for the	
	stem and heel are bent to hairpin shape to ensure	
	confinement of the joint concrete and full develop-	
	ment of the reinforcement at the critical sections.	
	To control reentrant corner cracking, a diagonal bar	
	is also included. The amount of diagonal reinforce-	
	ment required was experimentally determined to	
	be about one-half of the primary flexural reinforce-	
	ment.	