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(3) 

R 
Substituting the value of q from Eq. 2 into Eq. 3, letting p = r and Acol. = 
11'r2 , one obtains 

(4) 
A 

3(p. I) slab . (p3. 1) 

Acol. 

The value of p in the above equation can be found by taking advantage of the 
fact that yield line theory is an upper bound theory. Therefore the smallest pos-

sible value of m(1 km) must be the correct one. Differentiating Eq. 4 with re

spect to p and setting the right hand side equal to zero, one obtains 

p = 
3 3 Aslab I 

2 Acol. · 2 
(5) 

Eq. 4 and 5 are presented in graphical form in Fig. 84, with Johansen's interior 
column formulas shown as dashed lines for comparison. 

Case If-Interior, Square Column 

A square column with length of side s, supports the load acting on Aslab' 

The other parameters are as for Case I. A geometrically admissible yield line pat
tern is shown in Fig. 8-5. The distance b' is to be determined. The shear q on 
the perimeter of the yield line pattern will be 

_ P · w(s + 2b)2 

q - 4(s + 2b') 
(6) 

Dropping the rim of the square pattern a unit distance, one can again write the 
virtual work equation (for one quarter of the pattern): 

b' 2 2 1 I - 1 ') 
q(s + 2b') + 2w 2 3 + 2 w s b - m(l + km) b' (s + 2b 

Substituting q 
one obtains 

p 

from Eq. 6 into Eq. 7, letting (3 = and letting 
s 

wAslab 

m(l + km) 

4(2{3 + 1) 

Acol. 

(7) 

(8) 
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To find the correct value of one proceeds as in Case I and obtains 

= .!_ [ 3 Aslab - .!_ - 1] (9) 
2 2 2 

A comparison with Eq. 5 indicates that, for equal ratios of slab area to column 

area, = (p - 1) when r = s, i.e. when the circular column is inscribed 

inside the square one. Pursuing this type of comparison further, it can be shown 

that Eq. 8 and 9 give a considerably higher punching load for any given set of 

physical parameters, than does use of Eq. 4 and 5 with r = w , i.e., for the 

circumscribed circular column. When r = s, of course, the difference will be 

even greater. For geometrical admissibility the yield line pattern perimeter must 

be parallel to the column perimeter. The above analysis therefore indicates that 

when a square column punches through a slab in a bending failure, the yield line 

pattern should be that of a circular column. Furthermore, since the lowest 

punching strength will be obtained with the smallest column radius, one would 

predict that the punching strength of the square column would lie somewhere be

tween that of the circumscribed and that of the inscribed circular column. For 

the sake of safety, one should assume that of the inscribed circular column in de

sign. Experimental results have shown formation of circular yield line patterns 

around square column stubs and have been discussed previously .4 

Case III-Exterior, Circular Column Bisected by the Slab Boundary 

The column of Case I has been moved to the edge of the slab so that the edge 

coincides with the diameter of the column (see Fig. 8-6). In this case, the shear 

along the perimeter of the fan will be 

(10) 

and the virtual work equation will be identical to Eq. 3, except that the integra

tion will now be from 0 to 1r. The solution then becomes 

p 

with 

6 Aslab 
7rp --

wAslab Acol. 
= 

m(l + km) A 1 b 
6(p- 1) - {p3 - 1) 

Acol. 

p = 

(11) 

(lla) 
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The moment Mcol. which can be produced in the column by the slab can be 

found by integrating the negative slab moment m around the half perimeter of 

the column and adding the moment caused by the shear acting on the half column 
periphery: 

Mcol. = 2mr + w ( Aslab - Acol.) 

Eq. 11 and lla are shown in graphical form in Fig. 84. 

Case IV -Circular Column near the Slab Boundary 

(12) 

The column of Case I is so located that its center is a distance a ;;;:;. r from a 

straight slab boundary (see Fig. 8-7a). If the slab outside the yield fan remains 
plane and horizontal, as it must in small deflection theory and real structures, 
geometrical and continuity considerations require that the yield fan perimeter be 

parallel to the column perimeter, i.e. a circular arc. The radius of this arc will 

again be called R. The distance from the center of the column to any point on 

the slab boundary between its two intersections with the yield fan arc will be 
called R1. Obviously, R1 = where is measured as shown in Fig. 8-7a. 

As a further aid to calculations, let be the value of for which R = R1. 

It is obvious that the yield fan segments which do not touch the slab boundary 

will be identical to those of Case I, and that, therefore, their part of the formula

tion of the virtual energy equilibrium equations will offer no difficulty. The fan 

segments which are bounded by the edge of the slab, however, must be examined 
further. These segments are irregular quadrilaterals, which would be very difficult 

to analyze. Two possible simplifications are shown in Fig. 8-7b and 8-7c. Use of 

the latter would cause loss of the effect of the small triangle at the tip, since its 
area is a function of )2, while all other areas, and the integration, will only 

deal with the first power of the differential. In the model of Fig. 8-7b, on the 

other hand, the loss of the small tip triangle is offset by the adjacent added tri

angular area. This model of the segment was therefore used in the formulation. 

Then, letting the rim of the fan drop a unit distance, one can write the virtual 

work equation: 

f • + (R- (R ·<); + ·<);] + 

t/>1 

f' 
0 

r 
t/>1 

f' 
0 

R1 

R- r 
(14) 
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In this case, 

w(Aslab - Afan) 
q = 

2R(7T - ¢ 1) 

183 

(15) 

R a h · · f t' f Letting p = - and a = - , one can express t e tngonometnc unc 1ons o 
r r 

¢ 1 in terms of p and a . Therefore, integrating Eq. 14 and making the indicated 

substitutions, one obtains: 

6w ll +akm ( pf I x 

l a' [ -2 + ( + · I)] + uc cos + 
37T (p _ 1) slab _ (p 3 1) a -

A ) Acol. - 1T - arc cos p (16) 

This expression again contains p as an undetermined quantity. In this case, 

however, it will be difficult, if not impossible, to evaluate p directly. Instead, it 

is more practical to use an iteration procedure with a series of trial values of p 

to obtain the least value of m(1 km) for each set of the physical parameters. 

The results of a large number of such calculations are presented in Fig. 8-9, which 

shows the punching capacities, and Fig. 8-11, which gives magnitudes of the fan 
radii. Fig. 8-9 also shows two other failure modes which may govern in this Case. 

When a is relatively small, and Aslab/Acol. is relatively large, the mode pictured 

in Fig. 8-7 and expressed by Eq. 16 will give the lowest punching strength. When 

a is relatively large and Aslab/Acol. is small, a full circular fan will form, and the 

interior column punching expression, Eq. 4, will govern. Finally, if several col

umns are placed in a line, parallel to the edge of the slab and some distance from 
it, a cantilever failure may occur along a line tangent to the column perimeters. 
The equation of cantilever bending equilibrium applicable to this failure mode 
can be expressed in the form: 

(17) 

This equation is represented by the dashed lines in Fig. 8-9. 
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In this connection one can also examine the problem of a single circular column 

supporting an isolated, square slab at its center, (which is identical to a square foot

ing supporting a circular column). In that case, one can rewrite Eq. 17 to obtain 

(18) 

If one compares this with Eq. 4 and 5, one finds that cantilever failure will occur 

in the square slab when k is greater than a number which ranges from 0.16 to 

0.25 for the magnitudes oF Aslab/Acol. considered herein. Since such a slab or 

footing is likely to be reinforced on only one side, the condition required for a 

circular fan yield line failure will normally be met. 

Case V -Circular Column near a Corner of the Slab 

The column of Case I is so located that its center is a distance a r from 

each of two slab boundaries meeting in a 90 deg corner (see Fig. 8-8). The virtual 

work equation can be formulated in the same manner as that for the column near 

a straight boundary, except that the limits of integration and the expression for 

q will be slightly different. It should also be noted that, when a/r = 1, the fan 

will not extend into the region between the column perimeter and the corner. 

Thus two different expressions will be obtained: 

When a> 1 

p 
= 

6w ll +"km ( · 1) + 0.88!37358] + p ( x 

l a3 · l +log, ( · 3 + 2295587148] + 

(: +arc cos + 31T(p • 1) . (p 3 1) (! 1T. arc rl 
(19) 

https://www.civilenghub.com/ACI/133544671/ACI-SP-30?src=spdf


YIELD LINE ANALYSIS OF THE PUNCHING PROBLEM 185 

When a= 1 

P wAslab _ 
---:---,----,- = 
m(1 + km) m(l + km) -

Aslab I ( - 1.-2 ) (3 1 ) 61r -- --- log p + V p · 1 + p -4 1r • arc cos - x 
Acol. l + km e p 

l r- ( -r:-) (: Aslab ) 1 
. 2pV p 2 . 1 + loge p + V p 2 - 1 + 3(p - l) 1r -- • 1 + arc cos - · 

Acol. P 

( 3 l ) { ·l 
(p 3 - 1) 4 n - arc cos p (20) 

p is again an undetermined quantity in these equations and the correct punching 

load is best found by iteration for minimum m(l km) · 

In the case of corner columns it is not only possible, but certain, that, for some 

values of the parameters, the corner will break off beyond the column. See also 

Fig. 8-8. The cantilever bending equilibrium equation for this type of failure can 

be written as: 

(21) 

The results of calculations with Eq. 19, 20, and 21 arc plotted in Fig. 8-10, 

while some associated values of p are shown in Fig. 8-11. In Fig. 8-10, the 

straight lines ascending from left to right were obtained by usc of Eq. 21, while 

the curved lines descending from left to right were given by Eq. 19 and 20. As 

can be seen, the interior column punching strength governs for only a few cases 

and only when km = 0.5. It is apparent from Fig. 8-11, that the fan radius for 

minimum punching strength is not very sensitive to the value of a. Furthermore, 

p changed by less than 5 percent when km was varied from 0.5 to 2.0. It was 

therefore decided to only present the values of p for km = l here. 

LOWER BOUND AND SHEAR ANALYSIS 

Due to the lack of experimental data, it was felt to be desirable to check the 

upper bound yield line analysis with clastic analysis, and also to compare the pre

dicted strengths with those obtained from an ACI Code (ACI 318-63 and ACI 

318-71) shear analysis. The clastic analysis was carried out by finite difference 

solution of the partial differential equation for clastic slabs. It was supplemented 

by an incremental analysis in which yield hinges were introduced at the finite 
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difference mesh nodes at which the principal moment reached the Code ultimate, 

as the load was incremented in steps. The hinges were created by setting the ap
propriate node stiffnesses to very low values for all load increments above the 

one first causing yield moment at the node. The model used was a square slab 
supported on 4 square columns at the mid-points of the sides. The mesh size was 

1/32 times the side length of the slab, and the column side length was 1/16 that 

of the slab. This gave Aslab/Acol. = 64. km, of course, was = 1. Then for 

a = 1, the elastic theory gave m(l km) = 1.65, while for a = 2 it gave 

1.96. The incremental method gave m(1 km) = 5.49 for a = 1 and 6.12 

for a = 2. From Fig. 8-9 the yield line theory values would be 5.4 and 6.4 re

spectively. Some inaccuracy is inevitable in the incremental method, since the 

mesh size used was rather large compared to the column size and since, further

more, only 6 loading increments were used with the first model and 7 with the 

second one. This meant that several node points had to have their stiffnesses re

duced to very low values in the same increment, even though their principal 
moments did not all precisely reach the Code ultimate. The principal moment 

directions were also recorded, and they indicated that typical y: lid fans were in 

the process of forming as the loads increased. 

To check against the ACI Code shear analysis, it is convenient to rewrite the 

Code formulas for an interior circular column as follows: 

7r (2r + d)d = p - W'Tr (r + r (22) 

where d is the effective depth of the slab and ft) is the Code capacity reduction 
factor. Then, letting 7/8 d be the distance between the centroid of tension and 

the centroid of compression in the slab in bending, one can write the yield 

moment as: 

(23) 

Taking ft) as having the same value for both shear and bending, which is a small 

approximation, dividing Eq. 22 by Eq. 23, letting d/r = 6 and performing some 

algebra, one obtains: 

p 
28.7 Aslab (1 + !.s) Vr'; 

Acol. 2 
(24) 

[ Aslab _ (t + !_ s) 2l p6f 

Acol. 2 J y 

m 

Fig. 8-12 expresses Eq. 24 in graphical form. For columns near enough a slab 
boundary so that a < r + d, P must be multiplied by a reduction factor ap
proximately equal to (n - 0)/n where 0 = arc cos [a/(1 + (The 

vicinity of the boundary will also have an effect on P when a > r + but 
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this effect is not susceptible of direct shear analysis since it will be a bending phe

nomenon.) 

A comparison of Fig. 8-9 and 8-12 will show that, for large columns near a 

boundary of a thin slab, even the very conservative ACI Code shear formula pre

dicts a greater punching strength than yield line theory indicates is present. 
Actually, of course, it was shown previously4 that slabs at interior columns are 

apt to be much more resistant to punching shear than is predicted by the ACI 

Code. Lacking experimental data, one must be cautious about extrapolating this 
finding to columns near a boundary or corner. However, it should be noted that 

the constant Q contains the column perimeter in the denominator. If one then 
postulates a decrease in the effective column perimeter due to proximity of the 
boundary, one can obtain an increase in the apparent value of Q, which will be 

a warning of possible shear instead of bending failure. The presence of shear re

inforcement, of course, would greatly increase the permissible value of P in Eq. 

22 and 24, and would therefore increase the likelihood of yield line bending 

failure. 

EXAMPLES AND COMPARISONS 

The use of the foregoing theory will now be illustrated by means of a design 

example. A flat plate floor is to be designed for a service load of 100 lb per sq. ft. 

The column spacing is to be 25ft center to center in each direction, and the col

umns will be circular, with a 15 in. diameter. Slab thickness will be assumed to 

be 10 in., as determined by deflection requirements, the yield strength of there

inforcement will be set at 60 ksi and the concrete strength will be set at f' = 
4000 psi. The concrete weight will be taken as 145 lb per cu ft. c 

For ultimate strength analysis, the loading then will be: 

10 
wult. = 12(145){1.5) + (100){1.8) = 361 psf 

Considering an interior column first, 

--= 
625 ---- = 510 

1.252 (:) 

Then, from Fig. 8-4, one can find that m(l km) = 7.5. Since P = (625) 

(0.361) = 226 kips, it is obvious that m(l + km) = 226/7.5 in.-kips/in. In the 

vicinity of an interior column it would seem appropriate to distribute the rein
forcement so as to make the positive moment resistance of the slab half the nega
tive moment resistance, i.e., km = Thus one finds that the negative moment 

capacity of the slab must be m = 20 in.-kips/in., in all directions. From Eq. 23, 

with f/J = 0.9 and average d = in., one can find that p = 0.0059. This is 
the negative reinforcement ratio required to prevent yield line punching failure 
under the given conditions and loads. The positive reinforcement ratio, of course, 
will be one half that, and must also be provided. 
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It is now necessary to check this design against a punching shear failure. As 

discussed earlier and also in Reference 4, one can be assured that the punching 

failure will be of the bending (yield line) type, rather than in shear, if the para

meter Q < 2. Eq. 1 gives the expression for this parameter. It will be assumed 

here that the positive moment reinforcement will be detailed to extend into the 

columns, thus providing some dowel resistance to punching shear. Then, accord

ing to Reference 4, the value of p to be used in Eq. 1 is that for the negative 

moment reinforcement alone. Substituting the appropriate values (note that 

b = 151T in. and B = 1200 in.) into the expression for Q, one obtains: 

p2f d2 2 2 
Q = _Y_ = (0.0059) (60,000) (8.5) (I0)4 = 0.42 < 2 

V 4,000 (1T) (15) (1200) 

Thus there is no danger of a shear failure around these columns at the given loads. 

It should be noted that this analysis does not guard against other kinds of fail

ure in the slab as a whole. It only assures that, given the column configurations 

and slab parameters assumed here, no punching failure of the column through the 

slab will occur under the given load. It is quite likely that add:tional reinforce

ment will be required to prevent failure of the slab system in modes other than 

the punching one. This reinforcement, obviously, will not reduce the punching 

resistance, though it may increase Q to a point where shear failure could occur 

before bending failure, though at a considerably higher load than that for which 

the slab/column intersection was originally designed. 

If the same column were located tangent to an exterior boundary of the same 

flat plate floor, i.e., with a = I, one could assume that the effective Aslab/Acol. 

would be one half that of the interior column, which would make it equal to 255. 
At the same time, one might make the positive and negative moment reinforce

ment equal at that location, so that km = 1. Then, from Fig. 8-9, one finds that 

m(l km) = 4.4 for this case. From this, m = = 12.8 in.-kips/in. 

The negative reinforcement requirement then becomes p = 0.00375 from Eq. 23. 

Checking for shear failure, one would have to change the values of b and B 

from those used for the interior column. For a column so close to the boundary, 

one could conservatively use half the perimeter as resisting shear, so that 
b = (15) in., while B will now become 900 in. Then, provided the posi

tive moment reinforcement is again carried into the column, Q = 0.45. If this 
is not done, the value of p in Eq. 1 must be taken as the sum of the reinforce

ment ratios for positive and negative bending, which would make Q = 1.80. 
Accordingly, shear should not be critical for this case either. 

A column in a corner of the slab can be handled similarly, except that Fig. 8-10 

must be used in place of Fig. 8-9, and that the values of P, b and B must be re

duced appropriately. 

It will be instructive to analyse the interior slab/column intersection designed 

above, according to the ACI Code requirements for shear and also by some other 

proposed punching analyses. Only the interior column intersection can be so 
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checked, since neither the ACI Code nor the other proposed formulas are directly 

applicable to unsymmetrically loaded slab/column intersections. 

Fig. 8-12 is useful in carrying out the ACI Code analysis. For the example dis
cussed above, 8 = 8.S/7.S = 1.13. Then,fromFig.8-12, 

= 42 m{f'; 
Solving for P with m = 20 in.-kips/in., p = O.OOS9 and the physical parameters 
given previously, one finds that P = ISO kips. This, and the other comparative 

values for the given intersection, are listed in Table I below: 

TABLE I-COMPARATIVE VALUES OF PUNCHING LOAD (KIPS) 

Yield Line 
Punching 

226 

ACI Code 

ISO 

*For lightweight concrete. 

Whitney6 Yitzhaki 7 

208 109 20S 

SUMMARY AND CONCLUSIONS 

Mowrer and 

Vanderbilt* 

266 

The slab-column interaction of uniformly loaded flat plate structures has been 

examined by use of Yield Line Theory. Appropriate expressions have been de

rived for the bending-punching strength of such plates, when supported on col

umns located in the interior, or at or near the boundaries. Comparison of the ex

pressions for the former with experimental data available in the literature, has 

shown that the bending-punching phenomenon will frequently be the governing 
one for interior columns. Comparison of the expressions for the latter with the 

ACI Code punching shear analysis, (in the absence of experimental data) indicates 

that bending-punching must also be considered as a possible failure mode for col

umns at or near a boundary or corner. This will particularly be the case when 
shear reinforcement is used around the columns. Thus it appears that the single 
most important conclusion that one can draw from this study is that bending
punching failure is possible around all columns and that yield line theory can be 
used to analyze slabs for it. 

The yield line theory expressions derived herein are mainly applicable to circu
lar columns. However, it was shown that square columns may also be expected 

to cause bending-punching failure in a circular mode, and that, therefore, the 
bending-punching strength of a slab resting on square columns can be predicted 
from the expressions for circular columns. 

Comparison of yield line theory with some elastic, lower bound solutions, in
dicates that the latter severely underestimate the bending-punching strength. 
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