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Stability of Reinforced Concrete Shells: 
State-of-the-Art Overview 

By Egor P. Popov and Stefan ]. Medwadowski 

Synopsis: Over the last few decades, shell structures have become 
bigger--they cover larger areas without intermediate supports--and 
thinner. Because of this, the problem of buckling of shells has 
grown in importance. This paper contains an overview of the gen
eral problem of stability of reinforced concrete shells. The 
buckling phenomenon is defined and its manifestations in columns, 
plates, and shells are discussed. The linear critical load con
cept is reviewed first, followed by a consideration of geometric 
nonlinearities and of geometric imperfections of the shape of the 
shell as built. Next, the material properties of reinforced con
crete and its response under load are reviewed. The properties 
of inelastic behavior of concrete and reinforcement, the cracking 
of concrete, the amount of reinforcement, and the effects of con
crete shrinkage and creep are discussed. These factors make the 
buckling behavior of reinforced concrete shells significantly 
different from metallic shells and cause a reduction in the load
carrying capacity of the shell. Current approaches to shell 
stability analysis and design are on. 

Ke words: bucklin ; cracking (fracturing); creep properties; 
loads forces ; reinforced concrete; shells (structural forms); 
shrinkage; stability; structural analysis; structural design. 
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INTRODUCTION 

Domical forms have been used by man from time immemorial, for shelters, utili
tarian and symbolic structures. Early materials were natural wood, saplings, hides, 

stone, clay. Methods of construction were largely a matter of tradition, strongly 
influenced by local conditions and materials. Even though progress was dispersed and 
slow, evidence of some impressive structures has survived to our own time. 

Decisive progress was achieved in Rome; the most prominent example-partly 
because of its size, purtly because of its beauty, and partly because of its having sur
vived to our own time-is the Roman Pantheon, constructed approximately 1850 years 
ago. The structure consists of a hemispherical dome supported on a cylindrical drum. 

The diameter of the dome is approximately 43.3 m, resulting in a most impressive 
space, made possible by the use of the native pozzolean cement in the construction-in 

effect, the Pantheon is constructed of concrete. The dome is ribbed to lighten the dead 
load, as is the drum of the walls. At the edge of the large lantern opening at the top of 
the dome, the shell is approximately 1.2 m thick; the thickness increases toward the 
springing line. The total span of the dome was not exceeded until modern times (cf. 
TABLE 1). 

The tradition of domical forms continued, first in Roman architecture, in Byzan
tium (with the magnificent example of the Church of St. Sophia in Constantinople), 

later in the Romancsquc, the Gothic and the Renaissance, with many buildings remain
ing as testimony to the daring and skill of the builders. Domes on a noncircular plan, 

domes with pendantivcs, ribbed and skeletal shells were added to the tradition. The 
usc of concrete, however, so common in ancient Rome, gradually diminished and it 
became the forgotten material, to be rediscovered at the time of the Industrial Revolu
tion22. 

The Industrial Revolution witnessed many changes in the manner in which man 
built his structures. A rapid development of what is now called structural mechanics 
brought with it rational methods for the analysis of shells, the llrst comprehensive 
theory having been published by Aron in 187410, to be followed soon by the seminal 
writings of Love72. At the same time, new materials of construction were developed: 
cast iron, later to become steel, and reinforced concrete, a material of particular impor
tance because of its moldability and the case with which it could be formed into surface 
structures. Not surprisingly, the llrst reinforced concrete shell structures appeared 
before 1918. Examples are the Orly airport hangar by Frcyssinct, a corrugated cylinder 
with only a limited spatial action, but a most impressive project, nevertheless, and some 
barrel vaults by Pcrret22, delicate and well proportioned, and yet intensely practical at 
the same time, offering a promise of things to come. 
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Rapid growth in the construction of reinforced concrete thin shells came m the 

decade of the twenties. The rather forbidding formulations of the theory of thin shells 

were simplified, first for spherical caps by Geckeler 36, then by Finsterwalder33 for circu

lar cylindrical barrel vaults; in each case, the motive was the direct need of the con

struction industry. New forms appeared. Elliptic paraboloids were experimented with, 

Freyssinet 57 used conoidal north-light shells for railway sheds, where he achieved struc

tures of great beauty, and finally the hyperbolic paraboloid appeared, first in the realized 

projects of Baroni, later in the theoretical investigations of Aimond and Lafaille, to re

emerge triumphant in the exuberant architecture of Candela32. At the same time, new 

construction techniques appeared: guniting and rigid reinforcement (similar to the 

Melan system of bridge construction, but extended to three-dimensional surface struc

tures) for the Jena Planetarium, (>recast skeletal shells in the many projects of Nervi8°, 

use of cable reinforcement for shells, and finally the use of prestressing. 

TABLE I CQMPARISON OF SIIELL DIMENSIONS AND THICKNESS-TO RADIUS-OF 

CURVATURE RATIOS 

Project Location Type of Geometry Plan Radius of Thickness =<=h:R 
and Year dimensions curvature R , 

The Rome hemisphere 43.3 m (dial 21.65 Ill I. 2m 1:24 
Pantheon ('(1, 100 uttop 

Planetarium Jena hemisphere 25m (dial 12.5 Ill .06m 1:200 
1923 

-

Factory Jena spherical CUll 40 rn (dia) 28.28 Ill .06 Ill 1:470 
1923 

Market Algeciras spherical cap 47.6m (dial 44.1 Ill .09 Ill 1:490 
Hall 1934 on 8 supports 

Filter Minnesota ellipsoid of 45.7 Ill (dia) 47.24 .09 Ill 1:525 
Plant 1939 revolution to to to 

1--
5.33 Ill .ISm 1:35 

Factory Bryn Mawr elliptic 19.6 m 25.0 Ill .09 Ill 1:300 
1947 tlaraboloid X 25.3 Ill to to 

on reel. plun 32.9 Ill 1:400 

Auditorium MIT segment of a 48.0 m 34.0 Ill .065 Ill 1:520 
Cambridge sphere on 3 bet. support 
1955 points points 

Shopping Kunehoe, groined vuult 39.0 m 39.0 Ill .076 Ill 1:1000 
Center Oahu (intersection of X 39.0 Ill to to to 

1957 2 tori) or bel. SUtlllOrt 78.0 Ill .178 Ill 1:500 
4 poirlls poilus 

Palazetty Rome spherical cup 58.5 rn (dia) 30.9 Ill .335 Ill I :92 
diSport 1957 rib 

CNIT2 Pnris groined vault 219 Ill 89.9 Ill 1.91 Ill 1:47 
1957 (intersection of bet. support to to to 

3 cylinders) points 420.0 Ill 2.74 Ill 1:153 
on 3 points 

Hen's egg surface of 2crn .2 111111 1:100 
revolution (min) to .4 nun to 1:50 

I. precast, ribbed construction; material h:R ratio== 1:250 

2. 2-layer shell, Ounge thickness from .06 m to .12m; material h:R ratio 1:1750 
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It is important to note that the anticlastic surfaces such as the hyperbolic para

boloid, whatever the method of construction, are the only new structural form of the 

modern era 76• The initial impact for their use came from the need for efficient and 

cheap methods of covering large areas without having to construct huge scaffolding 

structures characteristic of the traditional methods of erection of reinforced concrete 

shells. 

Although the span of the Pantheon is very great, modern shell structures achieve 

much larger column-free areas and, what is even more significant, the thickness of the 

modern shell is orders of magnitude smaller than the thickness of the traditional 

domes. The trend toward greater spans and thinner shells can be clearly discerned (cf. 

TABLE 1). To an analyst, the significance of this ever larger radius of curvature-to

shell thickness ratio lies in the realization that it has an important effect on the buckling 

of concrete thin shells, and on their strength reserve. The thickness of shells, in the 

case of small spans, is dictated by construction considerations: the need to accommo

date reinforcement, the practicalities of placing concrete. Thus, a concrete thin shell of 

small span possesses an enormous reserve of strength. This is no longer the case if the 

spans become large. 

Early modern designers realized fully the need to protect shells from the possibil

ity of buckling. However, their ability to predict the buckling load was limited by the 

incomplete state of understanding of the phenomenon and by the practical difficulties, 

analytical and computational, of performing the necessary calculations. At this stage in 

the development of the theory, two shell forms were studied at length: the sphere and 

the cylinder. At first, familiar with the success of the linear buckling theory of Euler in 

predicting the buckling load of columns, analysts formulated the shell problem in the 

same linear manner. However, it soon appeared that the critical buckling load obtained 

in this way did not agree with the values of critical buckling loads obtained for the same 

shell forms experimentally, the experimental values being many times smaller than the 

critical load predicted by the analysis. 

The efforts to explain the lack of correlation between theory and experiment con

tinued over several decades, and have met with success. It appears that the problem 

has its root in the fact that a shell is a spatial, surface-type structure. Accordingly, the 

in-plane state of stress in a differential element of a shell consists not of just one axial 

stress (as is the case in a column), but of two axial stresses and an in-plane shear 

stress. If a shell is subjected to an axial compression in one direction, the associated 

axial stress in the orthogonal direction may be compressive or tensile. If it is tensile, 

the orthogonal axial stress tends to stiffen the shell, and to reduce the deflections nor

mal to the surface. However, if the orthogonal stress is compressive, it tends to 

increase the normal deflections, thus weakening the shell and lowering the critical buck

ling load. The linear shell theory is incapable of predicting this behavior, and recourse 
has to be made to the nonlinear theory of shells. This presents formidable computa
tional difficulties, in general intractable until the advent of the computer. 

An additional complication in attempting to predict the buckling behavior of rein

forced concrete thin shells lies in the nature of their material. The cracking of con

crete, nonhomogeneity of the material, its creep characteristics, its inelastic properties, 

all have to be taken· into account when studying nonlinear phenomena in shells. 
Finally, the inevitable imperfections in the geometry of the shell as built compound the 

difficulties of the problem and reduce the buckling load. These problems, too, are not 
simple, and can be handled generally only with the aid of computers. At this stage in 
the development of the theory, only partial success has been attained, but it seems fair 
to say that the essence of the problem has been captured. 

Until recently, the lack of computational facilities precluded either nonlinear 
analysis, or a detailed consideration of the material or geometric factors. Yet shells 
were being built, and safely. The designers, guided by their judgment as much as by 
some approximate analyses, resorted to a number of devices aimed at making rein-
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forced concrete thin shells safe in buckling. These devices included: 

Modification of the shape of the shell. This modification could take several 

forms. To reduce the radius of curvature of the shell in the small, local undula

tions might be introduced. Alternatively, the shape of the shell might be changed 

locally-usually along the edges-so that the radius of curvature might become 

smaller along a strip of the shell; this device consisted essentially of introducing 

an edge beam and thus stiffening the edge of the shell. An improvement in the 

buckling behavior of a shell could be obtained through the use of shells of double 
rather than single curvature. 

Modification in the manner in which the material is distributed throughout the 

surface of the shell. This can be done by providing a system of ribs throughout 

the surface of the shell, in one or two directions (usually orthogonal), as might be 

required in a given case. Alternatively, all of the material might be placed along 

the lines of the ribs, as in skeletal (or reticulated) shells, thus providing an 

"effective thickness" of the shell greater than if the material were evenly distri

buted throughout the surface of the shell. This type of modification is evident in 

the projects of Nervi80 and Torroja 105. 

A variant in the modification of the manner in which the shell material is distri

buted was used by Esquillan, one of the great pioneer shell designers of the 

modern era, in the design of the great hall of the CNIT near Paris30• This shell 
has the form of a groined vault on three supports, formed from the intersection 

of three parabolic cylinder segments, with the span between the three supports of 

approximately 219 m- the largest shell ever built. The shell itself consists of two 

thin surface layers, connected by shear-transferring diaphragms. Thus, the total 

thickness of the shell varies from l. 9 to 2. 7 5 m, while the average thickness of 

the material is on the order of only 17 em to 24 em. 

Finally, the introduction of appropriate prestressing loads may result in an 

improved buckling behavior. Possibly the best early example of the use of such 

devices is the famed Market Hall at Algeciras designed by Torroja 105. 

The excellence of judgment of shell designers is evidenced by the fact that, as far 

as we know, very few, if any, concrete shell failures have been conclusively shown to 

be due to buckling-although some failures said to be due to creep of concrete or to 

the steep temperature gradient may have been, in fact, buckling failures. (The only 

failure of a large shell conclusively shown to have been due to buckling involved a reti

culated spherical dome made of meta1114.) This is an enviable record, a testimony to 

the excellence of the designers as weir as the inherent strength of shell structures. For 

this record to be preserved, and in view of the growing number of shells being built, of 
ever-growing spans and ever-diminishing thicknesses, it is necessary to develop a better 

understanding of shell buckling behavior. 

The purpose of this paper is to provide an overview of the problem of buckling of 

reinforced concrete shells. The nature of the buckling phenomenon is examined, and 
its different manifestations possible in shell structures are reviewed. The difference in 
the qualitative behavior of columns and shells is considered, and the need for a study 
of postbuckling equilibrium states based on the geometrically nonlinear conditions for 

certain classes of shells is explained. The influence of geometric imperfections, of the 

inelastic material properties, of reinforcement, and of cracking of concrete is con

sidered. A brief review of the currently available analytical and experimental methods 
is made, followed by an examination of current provisions for the study of reinforced 

concrete shell buckling in two recent recommendations: the ACI2•4 and the IASS77. The 
paper is to serve as an introduction to the detailed studies of these topics undertaken in 
the companion papers contained in this volume. 
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THE BUCKLING PHENOMENON 

Consider a straight column subjected to a concentric compressive load. Let the 

load increase gradually, starting from zero. Within some range of the values of the 

load, the column remains straight-there is no lateral displacement normal to the axis 

of the column; the only deformation experienced by the column is a small shortening 

of its axis. 

However, at some value of the compressive load, the following event may take 

place: the column may experience lateral displacement, and this displacement will 

increase significantly without a correspondingly significant increase in the magnitude of 

the load. If such lateral displacement docs occur, the column is said to have buckled; 

the phenomenon itself is called buckling, and the value of the compressive load at 

which buckling occurs is called the critical load. 

It should be noted that the phenomenon of buckling is by no means restricted to 

that described above, that is, to transverse displacement of columns under axial 

compression. As an example, the same column subjected to a gradually increasing axial 

load might experience at some load level a sudden twist while remaining straight-a 

case of torsional buckling. Similarly, a beam supporting a bending load in its own plane 

might experience sudden twisting deformation-an example of lateral buckling of 

beams. Both these phenomena are well known and documented, and provisions for 

investigating the buckling of struts under compressive load, and for investigating lateral 

buckling of beams, arc contained in all building design codes. 

It turns out that plate and shell elements-in fact all structural elements subjected 

to loads such that internal compressive in-plane stresses are present-are also subject to 

buckling. However, because of the two-dimensional nature of shells (as opposed to the 

one-dimensional nature of columns and beams), the problem of buckling of shells is 

very much more complex in its physical manifestations, and very much more complex 

to investigate. 

b 1 
UNIT DISTANCE 

Fig. I Simply Supported Buckled Strut d\1' 
1 

w 

LL h 

t 
Px 

Fig. 2 Buckled Plate Simply Supported at Loaded and Free at Unloaded Edges 
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PATHS OF EQUILIBRIUM 

Introduction 

It is of interest to trace the successive positions of equilibrium of structural ele

ments associated with the successive values of slowly increasing loads up to, at, and 

beyond the critical load. The resulting load vs. deflection curve is called the path of 

equilibrium. The primary path is the portion of the curve up to the critical load, while 

the secondary path is the portion beyond the critical loiid. Columns, flat plates, and 

shells are all of interest because all three elements occur as parts of thin shell structural 

assemblies. Because of its relative simplicity, the problem of a column will serve as the 

starting point. 

Ideal Elastic Column 

Consider again a column under axial load. The column is supposed to be ideally 

straight, and subjected to ideally concentric compressive load-an ideal column. The 

length of the column is /, and it is simply supported at the ends. The external compres

sive load is P. 

In order to determine the successive deflected shape of the column in the succes

sive positions of equilibrium-the problem of elastica- the assumptions first made by 

Euler in 1744 are followed3t; these assumptions have since then been repeated in virtu

ally all standard texts on the strength of materials (see, for example, Ref. 83). We 

assume that the strain-displacement relations and the constitutive relations of the 
technical theory of beams apply, as follows 

du (J2JV 
e=-

dx 
K=---

dx2 

N=AEe M =ElK (1) 

where E and K are, respectively, the longitudinal strain and the change of curvature of 

the column, u and ware its axial and transverse displacements, xis the coordinate (cf. 

Figure 1), Nand Mare the axial force (positive if tensile) and the bending moment in 

the column, A and I are the area and the appropriate moment of inertia of the cross 

(a) 

p 

1.0 

p 

(b) (c) 

PIPer 

\IFURCATION 

POINT 

0 

Fig. 3 Buckling Behavior of Ideal Elastic Strut-Linear Theory 
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section of the column, and E is the modulus of elasticity of the column material. Next, 

assuming small deflections and negligibly small shear force components in the z
direction, the equations of equilibrium of the deformed differential element of the 

column can be written: 

dN = O 
dx 

dV + dN diV + N (J21V = O 
dx dx dx dx2 

v- dM =0 
dx 

(2) 

Substitution of eq. (2b) into eq. (2c) together with the use of eqs. (1) and (2a), and 

assuming E/ =constant, results in 

dN =O 
dx 

El d41V - N d2w = 0 
dx4 dx2 

(3) 

This is the system of differential equations that governs the problem, written in the two 

unknowns Nand IV. It is nonlinear in the sense that these unknowns appear as a pro

duct in the second equation. However, eq. (3a) can be solved for N first, and its 

known value can then be substituted into eq. (3b). In the case of a compressive force 

Pat the ends, N = -P, and 

El d41V + p d2w = 0 (4) 

dx4 dx2 

Consulting Figure 1 it is seen that this equation could be derived also by observing that 

the moment at any point x of of the column isM= Pw and hence, using eqs. (1), 

d2w P 
-+-IV= 0 (5) 
dx2 El 

Successive differentiation of this equation with respect to x, taking El =constant, results 

in eq. (4). Equation (5) is suited to obtaining solutions of problems involving only 

static boundary conditions, while eq. (4) can be used to obtain solution of problems 

involving any boundary conditions of a column. 

Nontrivial (i.e., IV¢ 0) solutions of eq. (4) exist only for certain values-the 

characteristic values-of the axial force P. The smallest of these values is called the 

critical value Pen also called the Euler critical buckling load of the column. The value 

of the critical load for a pin-ended column is given by the expression 

7T2£/ 
Per= -,-2- (6) 

For a column of rectangular cross-sectional area A and the smaller side dimension II, 
the moment of inertia is All2/12, and the critical load can be put in the form: 

1T2EA 1T2E (7) p = CT = -,.-,---,--;;-
cr 12(//11) 2 cr 12(//11) 2 

where the quantity 12 (I/ II )2 is termed the slendemess ratio, and cr cr =Perf A. 

Before considering further the solution of eq. (4), and to simplify a comparison 

with plates and shells, consider a rectangular column of width b (comparable in magni

tude to its length I) shown in Figure 2-in effect a plate, with the loaded edges simply 

supported and the unloaded edges free. Let the total column load be P = Pxb, and the 

flexural stiffness be El =Db, where 
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and where v is the Poisson ratio of the column material. Then eq. (4) becomes 

d4 p 12 

dx4 D dx2 
(9) 

This equation will be referred to at several points later in this paper. 

Solution of eq. (4) can be plotted as is done in Figure 3. As the axial force P 
increases, axial shortening of the column is observed. However, for the assumed ideal 

column, no lateral deflection w will occur until the critical load Per is reached. At that 
instant, the stable equilibrium configuration of the column is that of a slightly bent ele

ment. The point on the path of equilibrium where the magnitude of the applied load is 

equal to the critical load is called the bifurcation point, since at that point the path of 

equilibrium splits into two branches. The column may take either of two possible 

equilibrium configurations: the straight one or the slightly bent one. However, the 

solution of eq. (4) docs not provide any information about the magnitude of the lateral 

displacement A at the midheight of the column, nor about the slope and the shape of 
the branched path of equilibrium, respectively at and beyond the bifurcation point. The 

lateral displacement A can take on any value, subject only to the requirement that it 

remain small within the meaning of the assumptions made in the derivation of eq. (4). 

These assumptions are evidently too restrictive to allow the path of equilibrium 

corresponding to the bent configuration of the column to be plotted beyond the bifurca

tion point. 

A com(>lete solution of the problem was first obtained by Lagrange 68• Although 

his formulation was somewhat different (cf. Ref. 102), it was based on exact expres

sions for strain and curvature, instead of the approximate relation given in eq. (l). The 

plot of the corresponding path of equilibrium is shown in Figure 4. It is seen that after 

the bifurcation point has been reached, the column, while in the bent position, can sup

port a load larger than the critical load; the critical load itself is the same as the critical 

load predicted by the linear theory. However, the lateral deflections become very large, 

indeed so large as to be inadmissible from the point of view of using the column as a 

structural element. 

p;r:::, 

1.0 

______ L___ ___ _ 

0 1.0 8/8cr 

(o) 

A 

(b) 

\BIFURCATION 

POINT 

0 

Fig. 4 Buckling Behavior of Ideal Elastic Strut- Nonlinear Theory 
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The observation that the critical load obtained from the exact solution is the same 

as the linear Euler critical load leads to the speculation that the nonlinearity included in 

the analysis need not be strong-approximate nonlinear strain-displacement expressions 

might suffice if one is interested only in the segment of the path of equilibrium in the 

immediate neighborhood of the bifurcation point. This turns out to be the case, and 

the simplest nonlinear theory based on small displacements and moderately large rota

tions leads to the following approximate expression for the longitudinal strain 

e = du + _!_ [dw]2 (lO) 
dx 2 dx 

This relation replaces the equivalent expression in eqs. (1). The practical importance of 

eq. (10) in the case of columns is clearly limited, since the exact solution due to 

Lagrange is available, as has been mentioned. However, it is of great importance in the 

equivalent problem of plates and shells, as will be discussed later in the paper. 

Imperfect Elastic Column 

Since ideally straight concentrically compressed columns are unattainable in prac

tice, it is important to investigate the effect of geometric imperfections on the shape of 

the path of equilibrium. Some aspects of the behavior of imperfect elastic columns are 

illustrated in Figure 5. The column is assumed to have an initial midpoint deflection of 

On gradually increasing the applied axial load, the center deflection increases (Fig

ure Sa). By using a linear theory of the type given by eq. (4), the solution shown qual

itatively in Figure Sb is obtained. The paths of equilibrium vary depending on the mag

nitude of the initial eccentricity. However, regardless of the magnitude of .i0, the criti

cal Euler load serves as an asymptote for the solution. As lateral deflections increase, 

the linear solution (based on small displacements) becomes less reliable. The more 

accurate solutions for the imperfect elastic column, based on a nonlinear equation more 

exact than eq. (10), are shown in Figure Sc. The paths of equilibrium suggest that if 

very large lateral deflections are permitted, the initial eccentricity will play only a very 

minor role in the final capacity of the column. It must be emphasized again that the 

resulting deflections are very large. From Figure Sc it is seen that the lateral deflection 

may be as large as 0.4 of the column length /-this occurs when a pin-ended column is 

bent into a complete "circle." Such large deflections are completely out of the range of 

magnitudes admissible in practical applications in structures. 

p 

- Lorge 6 0 ---Lorge6 0 I 

I 

/60/.L I 
______ • .__ ____ ___l__ 

p 0 0.4 6/L 

(o) (b) (c) 

Fig. 5 Buckling Behavior of Initially Bent Struts 107 
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