Soil Stiffness Properties						
Soil Classification	Springs	Depth, m	Stiffness, kN/m			
	\mathbf{k}_1	0	0			
	\mathbf{k}_2	0.3	14			
	k ₃	0.6	28.2			
	\mathbf{k}_4	0.9	42.2			
	\mathbf{k}_5	1.2	56.4			
Γ	\mathbf{k}_{6}	1.5	70.5			
	\mathbf{k}_7	1.8	84.6			
	\mathbf{k}_8	2.1	98.7			
Γ	k9	2.4	113			
Γ	k_{10}	2.7	127			
Sand	k ₁₁	3.0	141			
	k ₁₂	3.3	164			
Γ	k ₁₃	3.6	180			
	k_{14}	3.9	195			
	k ₁₅	4.2	211			
	k ₁₆	4.5	226			
Γ	k ₁₇	4.8	242			
	k ₁₈	5.1	257			
Γ	k ₁₉	5.4	273			
Γ	k ₂₀	5.7	288			
F	k ₂₁	6.0	304			
	k ₂₂	6.3	1.9x10 ⁵			
Class	k ₂₃	6.6	7.9x10 ⁵			
Clay	k ₂₄	6.9	1.4×10^{6}			
F	k ₂₅	7.2	2.0×10^{6}			

Table 1—Soil spring stiffnesses at each layer

Table 2—Limit States for each component	[25]	
	L-01	

Component	Slight	Moderate	Extensive	Complete
Abutment, mm	28.9	90	140	190
Bearing, mm	9.8	37.9	77	100
Column, µ*	1	1.6	3.5	7.6

 $*\mu$ is the column curvature ductility

[1mm = 0.04 in]

Table 3 – Dispersion values for each Component						
Component	Slight	Moderate	Extensive	Complete		
Abutment, mm	0.59	0.60	0.64	0.65		
Bearing, mm	0.70	0.61	0.65	0.65		
Column, µ*	0.70	0.90	0.85	1.00		

* μ is the column curvature ductility

[1mm = 0.04 in]

This is a preview. Click here to purchase the full publication.

	Abutm	ent	Beari	ng	Column	
Scour Depth, m	Maximum Displacement, mm	% Difference	Maximum Displacement, mm	% Difference	Maximum Displacement, mm	% Difference
			Longitudinal			
0	21		1.2		11	
3.7	47	76	1.3	10.3	41	115
7.3	68	106	3.8	104	70	146
			Transversal			
0	10		2.9		4.8	
3.7	38	117	3.0	3.4	35	151
7.3	42	123	4.4	41	58	169

Table 4—Percent difference of longitudinal and transversal response for each bridge component

[1 m = 3.28 ft; 1mm = 0.04 in]

Table 5—Percent difference of system fragility curves								
	Slight		Moderate		Extensive		Complete	
Scour Depth, m	PGA, g	% Difference	PGA, g	% Difference	PGA, g	% Difference	PGA, g	% Difference
0	0.54		1.2		2.4		3.6	
3.7	0.29	60	0.5	85	0.8	101	1.2	102
7.3	0.26	70	0.4	102	0.6	121	0.84	123
			E 1	2 20 01				

11.73 14.63	0.40		2.74	10.24
		(c)		

Middle

[1.0 m = 3.28 ft]

Figure 1—Bridge schematic view: (a) elevation; (b) cross section; and (c) characteristics.

[1.0 m = 3.28 ft]

Figure 2—Iowa scour histogram

[1.0 kN/mm = 65 kip/in]

Figure 3—Analytical bridge model for the concrete slab bridge

[1.0 m = 3.28 ft]

85

Figure 4—Soil-column interaction model **All the dimensions of the springs are not at a scale.*

Torres et al.

Figure 5—Hysteresis loops for each bridge component at no scour: (a) abutment longitudinal; (b) abutment transversal; (c) bearing longitudinal; (d) bearing transversal; (e) column curvature longitudinal; (f) column curvature transversal

Figure 6— Hysteresis loops for each bridge component at 3.65m scour depth: (a) abutment longitudinal; (b) abutment transversal; (c) bearing longitudinal; (d) bearing transversal; (e) column curvature longitudinal; (f) column curvature transversal

Torres et al.

Figure 7— Hysteresis loops for each bridge component at 7.31m scour depth: (a) abutment longitudinal; (b) abutment transversal; (c) bearing longitudinal; (d) bearing transversal; (c) column curvature longitudinal; (f) column curvature transversal

This is a preview. Click here to purchase the full publication.

Figure 8— Fragility curves for each bridge component at no scour: : (a) abutment longitudinal; (b) abutment transversal; (c) bearing longitudinal; (d) bearing transversal; (e) column curvature longitudinal; (f) column curvature transversal

Torres et al.

Figure 9—Fragility curves for each bridge component at no scour: (a) abutment longitudinal; (b) abutment transversal; (c) bearing longitudinal; (d) bearing transversal; (e) column curvature longitudinal; (f) column curvature transversal

Figure 10—Fragility curves for each bridge component at no scour: : (a) abutment longitudinal; (b) abutment transversal; (c) bearing longitudinal; (d) bearing transversal; (e) column curvature longitudinal; (f) column curvature transversal