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Arch Analysis 

At each section along the span an "arch slice" is taken as a free body diagram, 

Fig. 11·9. The arch is in vertical equilibrium under the action of the applied ex­

ternalload and the so called "specific shear," = oNxyfox. is simply the 
difference between the membrane shears on the two faces of the arch slice and 

can be calculated at any point by 

(3) 

If the longitudinal distribution of the load W is uniform, all arch slices will be 

loaded identically and thus only a typical slice need be considered. If not, arch 

slices must be taken at several sections along the longitudinal span. 

If a single shell with free edges is being analyzed, the arch is statically determi· 

nate, Fig. 11-9b, and the transverse internal forces Ny, My, and Qy can be found 
directly at any cut section along the arch. If a typical interior shell is being 

analyzed, the horizontal displacement and rotation at the longitudinal edges must 

be zero and thus the arch analysis becomes statically indeterminate to the second 

degree, Fig. 11-9c. Any standard method of indeterminate analysis can be used 
to find the redundants X 1 and X2. Chinn 15 has derived formulas based on the 

elastic center method which simplify this analysis for the common circular cross­

section. For very long interior shells, L/R > 4, Parme and Connor in discussing 
Chinn's paper have shown that the effect of membrane displacements in addition 

to flexural displacements should be considered in the arch analysis to obtain ac· 

curate results. 

Several points should be recognized regarding the approximations inherent in 

the analysis. The arch analysis assumes each arch slice is free to deform trans­

versely. Actually, near the diaphragm supports this is not possible so that only 

at sections some distance from the supports can the internal forces Ny, My. and 

Oy reach the values found above. The assumption used in the beam analysis was 

that the cross-section did not distort, while the arch analysis indicates transverse 

moments exist and thus some distortion of the cross-section does occur. If the 

distortion due to arch action is small the assumption of a linear distribution for 

Nx should be good and thus the entire analysis should be quite accurate. It is 

evident from this that a better approximation is obtained for loads uniformly 
distributed in the transverse direction rather than concentrated, Fig. 11-8. 

Prestressed Shells 

A number of simple and continuous prestressed cylindrical shells and folded 
plates have been successfully designed by the beam method)6,17 The prestress­
ing cables are draped parabolically in the shell surface, Fig. 11·1 Oa, so that in the 
beam analysis, Fig. 11-lOb, the external load is balanced by the upward force 
exerted by the prestressing cables. Thus only a uniform longitudinal compressive 
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stress Nx is produced and no membrane shear stresses Nxy exist. For the arch 
analysis, Fig. 11-lOc, because the specific shear is zero, the vertical applied load 

on each arch slice is held in equilibrium by the cable forces which have both ver­
tical and horizontal components. Normal reinforcing steel is generally used to 

resist the transverse moments found from the arch analysis. 

Special consideration should be given to local stresses at the end anchorages 
and also to any possible overload conditions which might produce a considerable 

magnification of the stresses obtained for a perfectly load balanced design based 

on a fixed load. 

Advantages and Disadvantages of Beam Method 

Advantages of this method are: 

1. It is based on a simple theory which is universally known. 

2. It emphasizes the major structural action involved in many shells, and it can 

be applied with equal ease to simple and continuous shells and to symmetri­
cal cross-sections of arbitrary shapes. 

3. Prestressed shells can be easily treated using the load balancing concept. 

Disadvantages of this method are: 

1. It is an approximate method which is useful for long shells, and except for 

certain special cases its exact range of validity is unknown. 

2. For unsymmetrical cross-sections or cases where the resultant load does not 

pass through the shear center of the cross-section, its application becomes 

extremely complex and questionable, and in these cases it offers no particu­

lar advantage over more exact methods. 

DIRECT STIFFNESS HARMONIC ANALYSIS 

General Remarks 

This method was originally developed by Jenkins6 for the analysis of cylindrical 

shell systems. De Fries-Skene and Scordelis18 first utilized the method for the 

analysis of folded plate systems. A number of additional papers have also used or 
extended the procedure)9,20,21,22,23,24 

The problem to be solved is the determination of the internal forces and displace­
ments in a structural system consisting of an assembly of longitudinal shell elements, 
plate elements and beam elements, Fig. 114, interconnected at joints along their 

longitudinal edges and supported by transverse diaphragms. The known quantities 

input into the problem include geometry, dimensions and material properties of 

the structural elements, the surface and joint loadings, and the boundary conditions 
along the longitudinal joints and at the transverse diaphragms. 
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Direct Stiffness Method for Simple Span Structures 

For a simple span structure, Fig. 11-Sa, an analysis for applied loads with any 

arbitrary longitudinal distribution may be performed using a harmonic analysis. 
The applied loads are first resolved into Fourier series components. An analysis 

is carried out for all of the loading components of each particular harmonic and 

then the final results are obtained by summing the results for all harmonics used 

to represent the load. Once the solution technique, which involves extensive 

computations, has been developed for a single harmonic, it can be reused for any 

harmonic, and thus the method is ideally suited to the application of a digital 
computer. 

The analysis for each harmonic load has the advantage that such loads will 

produce displacements of the same variation and vice versa and thus a single 

characteristic value may be used to describe any force or displacement pattern. 

For example, the displacement pattern: 

n1TX 
r(x) = r0 sin L (4) 

may be described by the single value r0 • This makes it possible to treat an entire 
joint as a single nodal point and to operate with single forces and displacements 

instead of functions. If the conditions of static equilibrium and geometric com· 
patibility are maintained at a nodal point they will automatically be satisfied 

along the entire longitudinal joint. Thus, the two dimensional prismatic shell 

problem may be treated as essentially a one dimensional problem in the trans­

verse direction. A direct stiffness method applied to such a system results in a 
structure stiffness matrix which is extremely well conditioned for solution since 

the non-zero coefficients are all grouped in a narrow band along the main 

diagonal. 

Each joint or nodal point has four degrees of freedom: it can displace vertical­

ly and horizontally in a plane parallel to the end diaphragms; it can move longi· 

tudinally parallel to the joint; and it can rotate about an axis parallel to the joint. 

These directions define a "global coordinate system" for displacements or forces 

at the joint, Fig. 11-12 and 11-13. A "local coordinate system" for displace· 

ments and forces is defined for each element in any convenient system desired, 

Fig. 11-11. For example, for the shell element, Fig. 11-lla, longitudinal, tangen· 
tial, and radial directions at each edge are selected, while for the beam element, 
Fig. 11·11 c, the principal axis directions of the cross-section are selected. 

The direct stiffness method has been described in detail in many publications 
tions18,20 and thus will be only briefly outlined here. The procedure used is to 

first fix all of the longitudinal joints against displacements and determine the in· 
ternal forces in each plate and shell element due to surface loads only. To this 

fixed edge solution for surface loads is added a solution for joint loads only. 

The joint loads Rare taken equal and opposite to the sum of fixed edge forces at 
each joint plus any additional external joint loads acting on the system. The !at· 

ter solution can be obtained as follows. 
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(I) Element stiffness matrices k are developed for the elements in their local 

coordinate system, Fig. 11-11. For the shell and plate elements these are 

8 x 8 matrices while for the beam elements they are 4 x 4 matrices. 

(2) The element stiffness matrices are transformed to a global coordinate sys­
tem, Fig. 11-12, using displacement transformation matrices, a. 

or 

{ S} = [a] T [k][a] { v} 

fs} = [kJ [vJ 

(5) 

(Sa) 

for the shell and plate elements the 8 x 8 k matrix may be partitioned in­

to four 4 x 4 submatrices as follows. 

{ l = [ { :i } 
sj ) kji kjj vj 

(6) 

which relates the forces S, to the displacements, v, at the i and j edges of 

the elements. 

For the beam elements, a 4 x 4 matrix, is obtained relating external forces 

applied to the beam with corresponding displacements. 

(7) 

(3) Static equilibrium, Fig. ll-13a; requires that the external joint loads R 

must equal the sum of the element forces S acting on the same joint. For 

example, consider a shell, plate, and beam element meeting at a common 

joint, Fig. ll-13a. 

(8) 

(4) Geometric compatibility, Fig. ll-13b, requires that the external joint dis­

placements r must equal the element joint displacements v. 

(9) 

(5) The structure stiffness matrix K for the entire structure can now be as­

sembled by properly adding the element stiffness submatrices of Eq. (6) 
and (7). 

{R} = [K]{ r} (10) 

The K matrix is banded, of the tri-diagonal form and is well conditioned 
for solution of the unknown joint displacements r. 

(6) Internal forces and displacements are then calculated at selected points in 
each structural element by expressions relating these quantities to the 
joint displacements. 
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Assumptions at Shell-Plate-Beam Juncture 

Where extensions of the shell and plate elements into the beam all meet at the 

centroid of the beam cross-section, Fig. 11-14a, they are often assumed to extend 

from centroid to centroid of beam elements. However, for a general case, Fig. 

11-14b, they should be assumed to terminate at the beam edge, Points band c. 
For this case the centroid of the beam, Point a, is still assumed to be the longitud­

inal joint of the system and a suitable transformation of the shell and plate stiff­

nesses from Points b and c to Point a is necessary. A detailed derivation of the 

necessary equations for this type of transformation has been presented by 

Powell25 and has also been discussed by Jenkins.6 It is based on the assumption 

that plane sections remain plane for the beam cross-section under axial, flexural 

and torsional deformations and that the shear center and centroid of the beam 

coincide. 

Shell Element Stiffness Matrix 

The direct stiffness procedure discussed above is independent of the method 

chosen for determining the element stiffness matrices, so that in a general com­

puter program any subroutines desired can be incorporated for this purpose. 

For circular shell elements, a variety of solutions have been proposed based 

on classical shell theory. Depending on the terms neglected in the derivation one 

obtains the formulations of Flugge, Dischinger, Aas-Jakobsen, Lu.ndgren, Parme 
(ASCE Manual 31), Holand, Donnell-Von Karman-Jenkins (DKJ), Finsterwalder, 

or Schorer. Discussions of these theories is beyond the scope of this paper, but 
may be found in the books by Billington,! Gibson,2 and Ramaswamy.4 The 

most commonly used theories because of their greater simplicity have been the 

DKJ theory which is accurate for short and intermediate shells, but not for long 

shells and the Schorer theory which assumes Mx = Ox = Mxy = 0 in Fig. 11-6 
and thus is accurate for long shells only. Ramaswamy4 states that the Schorer 

theory should be used only for shells with span/radius, L/R > rr and the DKJ 

theory for L/R < 1.6. The author's experience with the DKJ theory indicates a 

somewhat greater range of accuracy. For single shells, free at the edges and un­
der uniform load, Fig. 11-9b, sufficiently accurate numerical results for design 

have been obtained for L/R < 5, while for a typical interior shell, fixed at the 

edges and under uniform load, Fig. 11-9c, this reduces to L/R < 2.5. 

A completely laid out approach for the development of the circular shell ele­

ment stiffness matrix based on the DKJ theory is given by Gibson.2 Ramaswamy4 

gives the necessary equations for the development based on either DKJ or Schorer 

theory. 

Plate Element Stiffness Matrix 

The response of a plate element, Fig. 11-11 b, can be divided into "slab action" 

due to forces normal to the plane of the plate and "membrane action" due to 
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forces in the plane of the plate. These two actions are of each other 

and thus the 4 x 4 slab stiffness matrix ks and the 4 x 4 membrane siif'fness 
matrix km can be calculated separately to form the 8 x 8 plate element stiffness 

matrix. 

(11) 

The determination of the stiffness matrices can be based either on the "ordi· 
nary theory" or the "elasticity theory."l8 The ordinary theory assumes that the 

membrane stresses in each plate can be calculated by elementary beam theory and 

that slab bending is defined by means of transverse one-way slab action only, thus 

in Fig. 11-6, Mx = Ox = MxY. = 0 is assumed. The elasticity theory, which is a 
more accurate approach, utilizes plane stress elasticity theory and classical two· 

way thin plate bending theory to determine the membrane stresses and slab mo· 
ments in each plate. Formulas based on both ordinary and elasticity theory for 

the stiffness matrix coefficients for isotropic, linearly elastic plates having rec­

tangular transverse cross-sections have been summarized for easy usage by De 

Fries-Skene and Scordelis.l8 The elasticity theory coefficients are taken from 

the original derivations by Goldberg and Leve.26 

For the above case there is little reason to use the ordinary theory when a 

computer program is available for a solution by the elasticity theory, except per· 

haps for comparative studies. However, direct application of the elasticity theory 

to cases other than the isotropic, linearly elastic plates of rectangular cross-section 

becomes exceedingly complex and resort must be made to simpler approaches. 

For example, for plates having transverse cross-sections that are trapezoidal, ele· 

ment stiffness matrices can be developed using ordinary theory rather readily. 

A theory known as the "finite strip method" has great potential for use in 

problems for which solutions by the elasticity theory are difficult to formulate 

and solve. The stiffness matrix for an orthotropic plate has been developed by 
Cheung23 using this technique. Willam and ScordeJis24 have used the same 

method to derive a stiffness matrix for an orthotropic plate with closely spaced 

eccentric ribs in both the longitudinal and transverse directions. The finite strip 

method may be thought of as a special form of the finite element method. It 

approximates the behavior of each plate by an assemblage of longitudinal finite 

strips for which selected displacement patterns varying as harmonics longitudi· 

nally and as polynomials in the transverse direction are assumed to represent the 
behavior of the strip in the total structure. With this assumption the displace· 
ment at any point in the strip can be expressed in terms of the eight nodal point 
displacements shown in Fig. 11-11 b. Using successively the strain-displacement 

relationships, the stress-strain law and thence either the principle of virtual dis· 

placements or the principle of minimum total potential energy, the element 
stiffness matrix and generalized or consistent loads can be derived for the strip. 
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Beam Element Stiffness Matrix 

Elementary beam theory is used to formulate the beam stiffness matrix which 

relates the four external forces Si and the four corresponding displacements vi 

shown in Fig. 11·11c. It is assumed that plane sections remain plane, warping due 

to torsion is neglected, and the centroid and shear center of the cross-section co­

incide. Derivations with formulas for the beam stiffness coefficients have been 
presented by Powell25 and Jenkins.6 

Direct Stiffness Method for Continuous Structures 

For continuous shells two approaches can be used which take advantage of 

the direct stiffness harmonic analysis concept used for simple spans. 

In the first approach, originally presented by Morice,19 the method can be ex­

tended to the solution of a prismatic shell span having boundary conditions at the 

two ends of fixed-fixed, fixed-simple or fixed-free, Fig. 11-15, by replacing the 

harmonic functions used for simple spans by basic functions which may be writ· 

ten in the form 

Like harmonic functions, the basic functions are orthogonal, however, they repeat 
themselves only after four differentiations rather than two as in the case of har· 

monic functions. The substitution of Eq. (12} into the boundary condition equa­

tions permits an evaluation of a sequence of values for the constants An and a0 

for various cases, Fig. 11·1 5. The shapes obtained are exactly the same as the 

natural modes of vibration of a prismatic beam having similar end boundary con· 

ditions. 

The applied load and displacements may then be resolved into components of 
a basic function series in a manner analogous to that used in a Fourier analysis 

for simple span structures such that 

(13} 

In using basic functions care must be taken that the governing theory used in de­
veloping element stiffness matrices and internal force-displacement relationships 
permit an uncoupling of the solutions for each term of the series. This will be 

adequately satisfied if the Schorer theory is used for shell elements, the ordinary 

theory for plate elements and elementary beam theory for beam elements. It will 
not be satisfied if the DKJ theory is used for shell elements or the elasticity theory 
is used for plate elements. Thus it is seen that the basic function approach is lim· 

ited to long shells. 

A second approach, originally developed by Pultar27 and also programmed by 
others,22,28 may be used for prismatic shells continuous over rigid or flexible in· 

terior supports, but simply supported at the two extreme ends, Fig. 11-16. A 
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force method of analysis is used in which the redundants are taken as joint and 

plate interaction forces between the folded plate structure and tllEl supporting in­

terior transverse diaphragm. These may be taken as infinitely rigid or as flexible 

rigid frames. The joint redundants consist of up to three forces at each longi­

tudinal joint which act in vertical, horizontal and rotational directions, Fig. 11-

17. The plate redundants are transverse distributed interaction forces, for ex­

ample, a set of up to four plate forces for each plate can be used, consisting of 

distributed normal and tangential forces having triangular variations between the 
longitudinal edges of the plates, Fig. 11-17. All of the redundant interaction 

forces are assumed to be uniformly distributed in the span direction over a length 

equal to the specified diaphragm thickness. The redundant interaction forces are 
determined as those required to establish compatibility between the folded plate 

structure and the interior supporting structure at each longitudinal joint in the 

vertical, horizontal, and rotational directions and in each plate at the third points 

between joints in directions normal and tangential to the plane of the plate. It is 

obvious, Fig. 11-17, that a large number of redundants can be involved and that a 

large number of terms of the appropriate Fourier Series is needed to represent 

their action on the folded plate structure. Nevertheless, complete solutions of 

examples similar to that shown in Fig. 11-16 have been solved in less than one 
minute on a CDC 6400 computer. 

Advantages and Disadvantages of Direct Stiffness Harmonic Analysis 

Advantages of this method are: 

1. It is well suited for computer programming and can yield a complete and 
accurate solution in a reasonable amount of computer time. 

2. Any desired theory can be used to determine the response of the struc­

tural elements and a variety of structural elements can be incorporated 
into the solution easily. 

3. Both surface and joint loadings of arbitrary longitudinal variation can 

be treated. 

4. Any combination of displacement and force boundary conditions at the 

longitudinal joints can be used. 

Disadvantages of this method are: 

1. It is restricted to structures with simple supports at the extreme ends 

when a harmonic analysis is used. For long span structures, the use of 
basic functions permits a solution of certain additional end support 
conditions. 

2. The material and dimensional properties of each structural element mak· 
ing up the cross-section must be constant in the longitudinal direction. 
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FINITE ELEMENT METHOD 

General Remarks 

Tllis method has been described extensively in the literature during the past 

decade. A comprehensive discussion of the theory and application of the method 
is given in the book by Zienkiewicz.29 Another paper by Clough and Johnson30 

in these Proceedings discusses its application to arbitrary shells, so that only a 

brief discussion of its application to prismatic shells will be given here. 

In the finite element method the actual continuum is idealized by an assembly 

of finite elements interconnected at nodal points, Fig. 11-18. For a prismatic 

shell system, the finite elements may consist of flat or curved two dimensional 

shell or plate elements and transverse or longitudinal one dimensional beam type 

elements. Stiffness matrices, which approximate the behavior in the continuum, 

are developed for the finite elements based on assumed displacement or stress 

patterns, after which an analysis based on the direct stiffness method may be per­

formed to determine the nodal point displacements and thence the internal 

stresses in the finite elements. It should be recognized that the accuracy obtained 

is dependent on the assumptions used in deriving the stiffness matrices and on the 

fineness of mesh used in subdividing the structure. As generally applied, the re­

sults obtained closely satisfy compatibility, but not necessarily equilibrium in the 

continuum until a sufficiently fine mesh is used. 

Shell and Plate Finite Elements 

A number of investigators31-37 have developed two dimensional finite elements 

specifically for analyzing prismatic shells. A discussion and comparison of some of 

these have been presented by Kohnke and Schnobrich3 7 and by Clough and John­

son. 3D Basic differences in the various investigations are: (1) curved versus flat 

elements; (2) number of nodal points and number of degrees of freedom per 

nodal point; and (3) assumed displacement patterns used in developing the ele­

ment stiffness. On all of these points, opinions differ on what is the best ap­

proach. 

For folded plates it is obvious that flat elements should be used, however, for 
curved cylindrical shells the use of flat rather than curved elements involves a geo­
metric error in modeling the structure. Nevertheless, if sufficient flat elements 

are used it can be shown that this error becomes quite small. 

Ideally the elements should have nodal points only at the four corners, Fig. 11-

18. This minimizes the band width in the assembled structure stiffness matrix and 
simplifies the interconnection of beam elements into the system. The number of 
degrees of freedom used per corner node has ranged from five33 to twelve.37 As 

the number used increases, fewer elements are needed in idealizing the continuum 
to achieve a given degree of accuracy for a given solution. However, the solution 
time may be about the same as that using a finer mesh of simpler elements with 

fewer degrees of freedom at each node, but the same total number of degrees of 

https://www.civilenghub.com/ACI/141182146/ACI-SP-28?src=spdf


CYLINDRICAL SHELL ANALYSIS 221 

freedom for the structure. The latter elements have the advantage of greater ver­

satility in varying material and dimensional properties, cut outs, boundary condi­

tions, loads, and the introduction of beam elements and are thus favored by the 

author. 

In developing the element stiffness, displacement patterns should be chosen 

with the following desirable criteria in mind: (1) constant strain patterns should 

be included; (2) rigid body displacements should not induce element strains; and 

(3) compatibility along element interfaces between nodal points should be main­

tained. Most elements presently being used do not satisfy all of these criteria 

completely. 

Beam Finite Elements 

To be of practical use in the design of prismatic shell systems, it is desirable 

that beam type elements can be incorporated into the finite element analysis. 

This then makes it possible to study ribbed shells, the effect of flexibility of rigid 

frame or arch supports as well as many other topics. Meyer and Scordelis3 8 have 

incorporated straight beam elements with flat rectangular plate elements in which 

both element types have six degrees of freedom per node. Constant strain and 

rigid body modes are included, but compatibility is violated. Kohnke and 

Schnobrich 37 have used straight and curved beam elements with curved cylindri­

cal shell elements in which twelve degrees of freedom per node are used. Their 

formulation achieves compatibility, but violates the rigid body mode criteria. 

Advantages and Disadvantages of Finite Element Method 

Advantages of this method are: 

1. It is the most general method available and can treat arbitrary loadings, 

boundary conditions, varying materials and dimensional properties in 

both longitudinal and transverse directions, and cut outs. 

2. Beam type transverse and longitudinal ribs as well as rigid frame or arch 

type supporting structures can be incorporated as integral parts of the 

structural system. 

Disadvantages of this method are: 

1. It requires a greater amount of computer time than a direct stiffness 

harmonic analysis to obtain a solution of comparable accuracy. 

2. A refined mesh size must be used to achieve accurate results in the 

vicinity of steep stress gradients, for example at concentrated loads and 

reactions. 

3. Static equilibrium is not automatically satisfied, but is approached as 

the mesh size used in the analysis is refined. Judgment must be used in 

selecting an appropriate mesh layout and in interpreting the results 

obtained. 
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