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TORSION OF CORE STRUCTURES 

Fig. 6-2(a) shows a view of a typical core structure which consists essentially 

of two channel sections coupled at each floor level by lintel beams and floor 

slabs. It may be assumed that the cross-sectional shape of the structure is main­

tained by the high in-plane stiffness of the floor slabs surrounding the box. 

The torque-rotation characteristics of such structures may be derived using an 

analysis which is analogous to the continuous medium technique employed 

earlier for plane walls with openings. It is again assumed that the system of con­

nections is constant throughout the height of the building. 

Under the action of an applied torque, the cross-section will undergo a rigid 
body rotation as indicated in Fig. 6-2(b), with a point of contraflexure occurring 
at the mid-span position of the connecting beams due to the anti-symmetry of 

the mode of deformation. 

If the structure is assumed 'cut' along the line of contraflexure, the only 

forces acting there will be shear forces, which may be replaced by a continuous 

shear distribution of the discrete set of connecting beams is again replaced by 

an equivalent continuous medium. These shear forces Q are equal in magnitude, 

but act in opposite senses on opposite connecting beams, as shown in Fig. 6-2(d). 

In order to achieve compatibility at the cut position in the complete structure, 

these shear forces must be of such a magnitude that they produce vertical dis­

placements which are equal and opposite to those produced by the torsional ro­
tation. (Fig. 6-2(c)) Following a procedure similar to that of Michael,2 the 

compatibility equations may be combined with the torque-rotation and the bend­

ing moment-curvature relationship to produce a single third order governing 

equation. 

Using the notation of Fig. 6-2(b) and (c), the displacements in the Oyx and 

Ozx planes are, respectively, 

= _!_ D8 · 
2 ' 

= _!__ B dv = _!_ BD d8 
w2 wl + 2 dx 4 dx 

(9) 

1 
u = u = - B8· 

2 1 2 ' 
1 du 1 d8 

w3 = w2 + - D - = - BD -
2 dx 2 dx 

The displacement v of the shear center S of each channel is, 

{10) 

The torque-rotation relationship for the system of channels is, 

d8 d38 
T = 2V - - 2W - + F (D + 2r) 

dx dx3 
(11) 
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where T is the applied twisting moment, F is the horizontal shear force, at the 

shear center, in each channel, and V and W are the St. Venant torsion and End 

Warping constants respectively.3 For a channel section, V and W become, 

t3 
V = G 3 (B + D • b • t) 

W = - (D • b · t)3 1 + -EtB2 ( tB3) 
192 4Iw 

where t is the wall thickness, and b is the clear span of the opening. 

The shear force F produces a bending moment per unit height equal in 

magnitude to F. Thus, 

m = T · 2V - · 2W - / D + 2r , ( dO d30) 
x dx dx3 

(12) 

The shear forces Q are of such a magnitude that they produce a deflection at 

the point of con traflexure which is equal and opposite to the deflection w 3 
produced by the rotation, so that, 

(13) 

The upwards and downwards shear forces produce a restoring bending couple 

on the channel in the Oxy plane, of magnitude QB (Fig. 6-2(d)). The intensity 

of the bending moment in the continuous system is thus, 

II 
m = 

X 
(14) 

The net bending moment intensity mx which must be resisted by the wall is 

the difference between the externally applied couple mx' and the restoring 
I II 

coupes mx. 

(1 5) 

Referred to the shear center, the moment-curvature relationship for the wall 
is, 

-EI - D + r -(
1 ) d2(;J 

w 2 dx2 
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so that the moment intensity per unit height is, 

m = -- = • EI - D + r dmx ( 1 ) 
x dx w 2 

(16) 

Hence, from Eq. (15), (16), (14), (12) and (9), the governing equation be· 

comes, 

where 

'Y2 

and 

d30 . 'Y2 dO= {3T 

dx3 dx 

24 Eibn 2o (D + 2r) 
4V + ------­

hb3 

4W + Eiw (D + 2r) 2 

2 
{3=------

4W + Eiw (D + 2r) 2 

(17) 

In the case of a concentrated twisting moment of magnitude Ti applied at any 

level xi, 

T = T· <x· · x> 0 
I I 

If the core is rigidly built-in at the base, then 

at X = 0, 0 = 0 and dO = 0 
dx 

(18) 

(19) 

Since the bending moment intensity in the continuous medium is zero at the 

top of the walls, 

at X= H, (20) 

The solution of Eq. (17), subject to the boundary conditions (19) and (20), 

may be shown to be, 
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{3 Ti { 1 1 o . 
() = - - <X· - X> - - <X· • X > Sinh 'Y (X· - x) - X· 

2 I 'Y I I I 

'Y 

1 
+ [sinh 'Y H + sinh 'Y(H - x)(cosh 'Y xi - 1) 

'Y cosh 'Y H 

- sinh 'Y (H - xi)] } (21) 

and the bending moment on the walls is given by, 

M = - EI ( D + r) d
2

() 
X W 2 dx2 

1 {3 Ti { 
= 2 Eiw {D + 2r) -;y <xi - x > 0 sinh 'Y (xi - x) 

sinh 'Y (H - x) } 
+ (cosh 'Y xi - 1) 

cosh 'YH 
(22) 

The other forces follow from the earlier relationships. 

Eq. (21) describes completely the relationship between a unit twisting mo­

ment at any level xi and the rotation produced at level x, enabling a complete 

set of influence coefficients kii (i.e. rotation at xi due to unit twisting moment 

at xj) to be evaluated readily ror any prescribed set of reference levels. 

The above analysis tacitly assumes that the core structure is symmetrical. If 
this is not the case, the displacement relationships Eq. (9) and (10) must be modi­

fied to take account of the asymmetry, although the general technique remains 

unaltered. 

TORSION OF PLANE WALLS 

The simple engineering theories of bending and torsion indicate that, for a thin 
rectangular cross-section, of depth d and thickness t, the bending stiffness (I) 
is proportional to d3t and the torsional stiffness (J) is proportional to dt3. In 

practical shear wall structures, the depth d is very much greater than the wall 
thickness t, with the result that the torsional stiffness is very much less than the 
bending stiffness. The effect of the former may thus often be neglected, with 
little error involved. 

If warping effects are neglected, and ordinary simple torsion theory is used, 
the torque-rotation relationship for a wall element is, 

T. =c. (d(J) 
I I dx . 

I 

(23) 
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where Ci is the torsional stiffness of the element at that level. For a plane wall 

which has the form of a thin rectangle, 3 

where G is the shear modulus. 

If the wall has 'flanges,' the torsional stiffness of the complete section is ob­

tained by summing the stiffnesses of the component rectangular elements. 3 

If the wall is perforated by a regular series of openings, the reduction in tor­

sional stiffness is given approximately by the curve of Fig. 6-3. This graph is 

based on a series of torsional tests on thin perspex specimens, 12 in. long be­

tween end fixings, 1/2 in. thick, and from 2 to 6 in. wide, containing a regular 

set of 12 openings. After testing the unperforated specimen to give a datum re­
sult, the hole sizes were gradually increased and the reduction in stiffness ob­

served. The graph is not complete, since it does not include the influence of 
coupling beam stiffness, although the tests indicated that, over a typical range of 

relative stiffnesses, they do not greatly alter the results. In addition, the restrain­

ing effect of floor slabs was not simulated. However, the curve is included in 
view of the complete lack of information on this topic, and should be useful in 

giving a guide to the likely reduction in torsional stiffness caused by typical 
patterns of openings. 

If the torsional stiffness is constant, Eq. {23) may be integrated directly, and, 

on putting in the boundary condition of zero twist at the base, the rotation () 

at any level x due to an applied torque Ti at level xi becomes, 

T. 

() = Cl l X - < X - Xi > 1 (24) 

A Macaulay bracket is again used to enable the single expression Eq. {24) to 

describe the behavior above and below the point of load application. The angle 
of rotation increases linearly up to level xi, and remains constant thereafter. 

Alternatively, by using the finite difference equivalent for the rate of change 

of twist, the twisting moment at xi becomes. 

{25) 

where 's' is the height interval between reference levels. Eq. {25) may be used 
for all levels except the top-most level Xn, where the alternative backward dif­
ference expression must be used, 

(26) 
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ANALYSIS OF COMPLETE STRUCTURE 

Suppose that the structure consists of a number of parallel coupled wall as­
semblies and individual cantilever elements. In either case, for the kth wall unit, 

the load-deflection relationship may be expressed in matrix form as 

(27) 

where Yk and Pk are column vectors of deflections Yik and total applied loads 

Pik at the set of chosen reference levels xi, and Fk is a square flexibility matrix 

of influence coefficients fi.k evaluated from Eq. (7) or (8). Relationships of the 

form of Eq. (27) may be sJt up for each wall assembly. In buildings of the form 

considered, there is usually a certain amount of repetition in the layout, so that 

the number of different types of wall assemblies is limited. Any applied dis­

tributed loads on the structure may be considered as a series of point loads at the 

reference levels. 

For a perforated core element, the torque-rotation relationship may be ex­

pressed in the form, 

(28) 

where 8 and Tk are column vectors of rotations Oi and total twisting moments 
Ti at the same set of reference levels, and Kk is a square matrix of influence co­

efficients kijk evaluated from Eq. (21). 

For plane walls, a similar relationship can be set up using Eq. (24). 

Alternatively, it could be set up in the inverse form, 

(29) 

where Tk and 8 are again column vectors of overall twisting moments and rota­
tions, and Ck is a square matrix of coefficients derived from Eq. (25) and (26). 

In that case, the same expressions which follow may be derived, provided that the 

matrix Kkl is replaced by Ck. 

It is assumed that the floor slabs are so stiff in their own plane that they under­

go only rigid body displacements, so that the structure will deform in plan view 

as shown in Fig. 6-4. For convenience, all displacements are referred to the left 
hand end, 0, and the displacement of any element at level xi at a distance zk 
from the datum or 'center of rotation' will thus consist of a deflection 

(Yi + Oi zk) and a rotation Oi. Eq. (27) then becomes, 

(30) 

where y and e are column vectors of the deflection of the datum position and 
the rotation at each reference level. 

https://www.civilenghub.com/ACI/142152739/ACI-SP-35?src=spdf


222 ANALYSIS FOR TORSION 

Suppose that the structure is subjected at each level to a load Pi, applied at 
the datum, and a twisting moment Ti. (Any set of applied forces and moments 
on a rigid body may always be resolved into a force and couple at any specified 

position on the body.) These forces must be resisted by the wall assemblies, so 
that, for horizontal and rotational equilibrium, 

(31) 

(32) 

where Pik and Tik are the horizontal load and twisting moment carried by wall 

assembly k at level xi' and the summations are carried out over all wall assem­

blies. For the complete structure, the equilibrium equations become, 

(33) 

(34) 

- -
where P and T are the column vectors of the total applied load and twisting 

moment at each level. Substitution of Eq. (30), (28) and (29) into (33) and (34) 

yields, respectively, 

(35) 

(36) 

In Eq. (36), it is tacitly assumed that the appropriate forms of the flexibility 

matrices Kk from either (21) or (24) are used in the analysis. 

The solution of Eq. (35) and (36) is, 

y = [G1 - G2 <\ -1 G2] [P - G2 G3 -1 T] 
(37) 

where · G = k F -I 
1 k 

G2 = k Fk-1 zk 

(;3 = k (Fk-1 zk2 + K.k-1) 

For generality, the solution has been given for both an applied load and an ap­

plied twisting moment at each reference level. If torsion alone is considered, the 

matrix P is set to zero. 
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Once the deflections and rotations have been determined, the loads and twist­

ing moments on the various wall elements at the different levels may be evaluated 

from Eq. (27) and (28). The forces and stresses follow from the earlier equations. 

MODEL TESTS 

Three twenty-story models were tested. The models were fabricated from 

sheet perspex, with plan forms shown in Fig. 6-5 and 6-6. The models were con­

structed by cutting slots in the floor slabs to accommodate the walls which were 

made in one piece and glued into position, using blocks to maintain a constant 

story height. Model 3 was constructed by glueing flank walls (D) and cross-wall 
'flanges' (E) to Model 2. The nominal dimensions and properties of the models 

are given in Table 6-1. 

All models were asymmetrical, so that both bending and torsional deforma­

tions would generally result from any applied force system. The first model was 

a simple idealised structure designed to be torsionally weak, whilst the second 

and third were designed to be more realistic structures resembling the basic form 

of cross-wall assembly encounted in an apartment block. 

The walls and cores were glued into a 25.4 mm (1 in.) perspex sheet at foun­

dation level. The models were then clamped horizontally in a test frame, with 
steel sections employed to brace the foundation slab to give a condition repre­

senting as closely as possible a rigid foundation. Throughout the tests, checks 
were carried out to ascertain if any foundation movement was taking place. 

Torsional moments were applied by a superposition of two equal and opposite 
loads, applied near the edges by dead weights through wires attached to the floor 
slabs. The loads were applied in increments, and strains and displacements meas­

ured by electrical resistance gages and dial gages respectively; they were then 
plotted so that unit values could be obtained from the optimum linear curve. 

COMPARISON BETWEEN THEORY AND EXPERIMENT 

A comparison is made between theoretical and experimental results in Fig. 6-7 

to 6-12. All curves refer either to a uniform eccentric line load, of 1 kg per story 

height, or a uniformly distributed torsional moment, produced by two equal and 

opposite line loads of 1 kg per story applied at the positions indicated in Fig. 6-5 
and 6-6. 

Fig. 6-7 shows the rotational deformations due to a uniform twisting moment, 
and Fig. 6-8 shows typical deflection profiles, for Model 3 only, due to a uniform 
line load. Fig. 6-9 and 6-10 show the bending stress distributions due to torsion, 

while, for completeness, Fig. 6-11 gives the corresponding stress distributions due 

to an eccentric line load. In each case, the bending strains were measured just 

above the third floor level, this being chosen to ensure that the stresses would be 
affected as little as possible by any localised foundation effects. Similar results 
were obtained from Models 1 and 3 subjected to line loads, and are not repro­
duced here. 
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The shear strains were measured at the fourth story level by 45 deg strain 

gage rosettes. Being relatively small, these were more difficult to measure ac­

curately, and the results are shown only for Model 2 subjected to torsional load­

ing, since these appeared to be the most consistent and accurate of the three 

tests. 
Although the theory predicts accurately the maximum deflections due to ec­

centric line loads, it underestimates the torsional stiffness of the structure, the 

theoretical rotations being greater than those measured. The same effect is 

shown in the stress distributions. Consequently, the results are less accurate for 

structures subjected to torsional moments, although the agreement between 

theory and experiment is still reasonable. The shear stress distributions indicate 

that the theory is capable of predicting accurately the distribution of load be­

tween the various elements of the structure. 

Earlier work (e.g. Reference 1) has shown that the continuous connection 

method is capable of yielding accurate results, for both deflections and stresses, 

for laterally loaded plane perforated shear walls. Consequently, the discrepancy 

between theory and experiment is probably due to errors involved in combining 

such plane elements into a three-dimensional assembly. It is not possible to pro­

duce easily a small-scale three-dimensional model of the mathematical conception 

consisting of plane coupled elements constrained to act together with rigid-body 

movements, in plan, as envisaged in Fig. 6-4; it is necessary in the construction of 

the model to use floor slabs which are rigidly joined to the vertical wall elements, 

and they must undergo out-of-plane deformations when the walls bend under the 

action oflateralloads. Consequently, in assessing the coupling action between 

wall elements, it is necessary to estimate the effective bending stiffness of the 

continuous floor slab. For simplicity in construction of the present models, no 

lintel beams were provided, and the only connecting medium between vertical 

elements was the horizontal slabs. 

In the theoretical work, the effective width of floor slab connecting plane 

walls was determined from the curves given by Qadeer and Stafford Smith.4 

These are limited in use, and the effective width of floor slab coupling the box 

core C and plane wall B in Models 2 and 3 (Fig. 6-6) could only be estimated, 

and some error may be present. In addition, the forms of the stress distributions 

in the two coupled wall elements in the simplest model tested (Fig. 6-9) show 

that more of the applied moment is carried by axial forces in the walls than is 

predicted theoretically, indicating an underestimation of the coupling stiffness. 

When rotation of the structure takes place, the floor slabs, being constrained 

to act with the wall clements, will tend to warp as well as bend out of their 

plane. In its present form, the theory does not take account of the warping 

stiffness of the floor slabs, which in the models tested may afford a considerable 

restraint and increase the torsional stiffness of the system. It is likely that the 

discrepancies between theoretical and experimental results are due largely to 

this effect. 

In practice, however, the floor slabs may be constructed from precast units, 

with in-situ joints at the walls. Alternatively, if the floor slabs are cast in-situ, 

the joints are often designed to provide a shear connection but to provide little 
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or no bending connection. This is done so that localised spalling of the concrete 

due to high connecting moments may be avoided. In either case, the moment 

connections are weak and the effective coupling stiffness of the floor slabs is 

low. The main connections between shear wall elements will then be the lintel 

beams spanning between them at each floor level, whose stiffness can be deter­

mined accurately. The influence of bending and warping of the floor slabs will 

then be relatively much smaller, and the theory presented is likely to give much 

more accurate predictions of the deflections and stresses throughout the struc­

ture. 

The continuous connection technique on which the analysis is based becomes 

more accurate as the number of stories increases. It has been shown that in the 

analysis of multi-story structures it is essential to include the effects of axial de­

formations of the vertical elements, and this is included in the analysis. Since the 

analysis is applied to a continuous system, there is no need to refer to every level 

as in the case of a conventional frame analysis. The engineer can thus decide on 

the number of reference levels which need be employed, and a standard program 

could be adopted to perform the analysis for a fixed number of divisions of the 

total height, for example 10. The orders of the matrices required are very small, 

since the order of the largest matrix handled is the same as the number of refer­

ence levels used. In fact, for preliminary design calculations, approximate 

analyses of complex structures may be performed by hand calculation if only a 

small number of reference levels are employed. 

CONCLUSIONS 

A simple approximate method has been presented for the torsional analysis of 

three-dimensional structures consisting of assemblies of coupled shear walls and 

core elements. Even if the system of walls is complex, it is generally possible to 

divide them into assemblies of discrete coupled units for analytical purposes. The 

method is aimed particularly at industrialised building systems, including large 

panel construction, in which there tends to be an essential regularity of structural 

form throughout the height. However, a limited number of changes in geometri­

cal or stiffness characteristics, along with different foundation conditions, may 

readily be incorporated. 
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