108 Naaman and Chandrangsu

Fiber Type	Diameter mm	Length mm	Density g/cc	Tensile Strength MPa (ksi)	Elastic Modulus GPa (ksi)
PVA* f1	0.19	12	1.31	900 (130)	29 (4,200)
PVA* f2	0.014	6	1.31	900 (130)	29 (4,200)
Carbon f3	0.0095	6.35	1.80	2800 (405)	240 (35,000)

Table 3 Properties of discontinuous fibers used in experimental study.

* Poly Vinyl Alcohol.

ID of the Test Series	Type of Mesh	Volume of Mesh* Vr	Fiber Type	Volume of Fibers Vf	Total Volume Fraction of Reinforce- ment
K0%	Keviar	1.15%			1.15%
K1%f1	Kevlar	1.15%	PVA 12 mm	1%	2.15%
K1%f2	Kevlar	1.15%	PVA 6mm	1%	2.15%
K1%f3	Kevlar	1.15%	Carbon	1%	2.15%
K2%f1	Kevlar	1.15%	PVA 12 mm	2%	3.15%
S0%	Spectra	1. 67 %			1.67%
S1%f1	Spectra	1.67%	PVA 12 mm	1%	2.67%
S1%f2	Spectra	1.67%	PVA 6mm	1%	2.67%
S1%f3	Spectra	1.67%	Carbon	1%	2.67%
S2%f1	Spectra	1.67%	PVA 12 mm	2%	3.67%
C0%	Carbon	1.40%			1.40%
C1%f1	Carbon	1.40%	PVA 12 mm	1%	2.40%
C1%f2	Carbon	1.40%	PVA 6mm	1%	2.40%
C1%f3	Carbon	1.40%	Carbon	1%	2.40%
C <u>2</u> %f1	Carbon	1.40%	PVA 12 mm	2%	3.40%

Table 4 Volume of reinforcement

* For two layers of mesh

К: Kevlar mesh: leno weave in longitudinal direction; VrL = 0.72%

S : Spectra mesh

Carbon mesh

PVA 12mm-long fibers PVA 6mm-long fibers

C : f1 : f2 : f3 : Carbon 6 mm-long fibers

	f	d	+	d	d	Tou	igh-
D	'cr	Gcr	,bc	upc	umax	ine	iex
	MPa	mm	MPa	mm	mm	110	130
	(psi)	(in)	(psi)	(in)	(in)		
KON	5.31	0.305	26.89	16.51	16.51	8	25
KU%	(770)	(0.012)	(3900)	(0.65)	(0.65)		
K10/40	7.58	0.305	35.85	15.24	20.32	11	34
N17012	(1100)	(0.012)	(5200)	(0.60)	(0.8)		
K+0/44	6.90	0.254	38.61	14.73	>30.48	8.5	32
N17011	(1000)	(0.010)	(5600)	(0.58)	(>1.2)		
KONA	7.72	0.457	39.99	16.51	>30.48	12	36
R2%11	(1120)	(0.018)	(5800)	(0.65)	(>1.2)	1	
K10/40	8.62	0.483	31.03	13.97	17.78	8	38
N 1%13	(1250)	(0.019)	(4500)	(0.55)	(0.7)		
0.004	4.83,	0.254	26.20	17.78	17.78	9	30
50%	(700)	(0.010)	(3800)	(0.70)	(0.7)	1	
010/40	9.65	0.356	36.54	19.05	24.13	12	43
51%12	(1400)	(0.014)	(5300)	(0.75)	(0.95)		
010/51	7.24	0.254	37.23	21.59	>30.48	10	36
51%11	(1050)	(0.010)	(5400)	(0.85)	(>1.2)		
S00/ #1	8.62	0.305	37.23	22.86	>30.48	10	36
32 %11	(1250)	(0.012)	(5400)	(0.90)	(>1.2)	1	
0.00	5.86,	0.381	25.51	6.35	6.35	13	42
00%	(850)	(0.015)	(3700)	(0.25)	(0.25)		
010/40	7.58	0.381	25.51	7.11	7.11	14	42
01%12	(1100)	(0.015)	(3700)	(0.28)	(0.28)		
C1%f1	6.90	0.254	26.89	5.84	15.24	14	43
1	(1000)	(0.010)	(3900)	(0.23)	(0.60)		
C2%f1	9.65	0.305	26.20	5.08	25.4	16	43
1	(1400)	(0.012)	(3800)	(0.20)	(1.0)	1	

Table 5. Summary of the average test results.

- fcr : Cracking Stress
- d_{cr}: Deflection at cracking
- fpc: Maximum post-cracking stress
- dpc : Deflection at post-cracking stress
- dmax : Maximum deflection
- f1 : PVA#12mm-long fibers
- f2: PVA 6mm-long fibers

110 Naaman and Chandrangsu

Table	6.	Cracking	observation	after	testing
-------	----	----------	-------------	-------	---------

Specimen	Total no. of	Crack	Comments
D	cracks visible	spacing	
	to the naked	mm	
	eye	(in.)	
K0%	7	19.05	cracks occurred in the middle
		(0.75)	portion of specimen.
K1%f2	11	15.24	cracks occurred in the middle
		(0.60)	portion of specimen
K1%f1	18	10.67	cracks occurred first under the
		(0.42)	load points and then over the
			middle portion of the specimen
K2%f1	20	8.89	cracks occurred first under the
		(0.35)	load points and then over the
			middle portion of the specimen
K1%f3	9	17.02	cracks occurred in the middle
		(0.67)	portion of specimen
S0%	6	19.05	cracks occurred in the middle
		(0.75)	portion of specimen
S1%f2	13	13.97	cracks occurred in the middle
		<u>(0.55)</u>	portion of specimen
S1%f1	17	10.41	cracks occurred first under the
		(0.41)	load points and then over the
			middle portion of the specimen
S2%f1	19	9,14	cracks occurred first under the
		(0.36)	load points and then over the
			middle portion of the specimen
C0%	1 major crack	•	a major crack occurred near one
]	and 1 very fine		of the load points
	crack		
C1%f2	1 major crack	-	a major crack occurred near one
	and 1 very fine		of the load points
	crack		
C1%f1	1 major crack	-	a major crack occurred near one
	and 2 very fine		of the load points
	cracks		
C2%f1	1 major crack	•	a major crack occurred near one
	and 2 very fine	1	of the load points
	cracks		1

K : Kevlar meshf1 : PVA 12 mm-long fibersS : Spectra meshf2 : PVA 6 mm-long fibersC : Carbon meshf3 : Carbon fibers

Specime n ID	Type of failure	Comments
K0%	Delamination of the mesh	The tensile (bottom) mesh delaminated near the load point leading to a sudden drop in resistance and failure
K1%f2	Shear type failure	At failure, a loud noise occurred and the load suddenly dropped.
K1%f1	Shear type failure	After failure, the specimens could still take some load. Even at very large deflections, the mesh did not break.
K2%f1	Shear type failure	After failure, the specimens could still take some load. Even at very large deflections, the mesh did not break.
K1%f3	Shear type failure	At failure, a loud noise occurred and the load suddenly dropped.
S0%	Delamination of the mesh	The tensile (bottom) mesh delaminated near the load point.
S1%f2	Shear type failure	At failure, a loud noise occurred and the load suddenly dropped.
S1%f1	Shear type failure	After failure, the specimens could still take some load. Even at very large deflections, the mesh did not break.
S2%f1	Shear type failure	After failure, the specimens could still take some load. Even at very large deflections, the mesh did not break.
C0%	Tensile failure of the mesh	The main crack kept opening under increased load, then the mesh suddenly failed.
C1%f2	Tensile failure of the mesh	The main crack kept opening under increased load, then the mesh suddenly failed.
C1%f1	Tensile failure of the mesh	The main crack kept opening under increased load, then the mesh suddenly failed. After failure, the specimens could still take some load.
C2%f1	Tensile failure of the mesh	The main crack kept opening under increased load, then the mesh suddenly failed. After failure, the specimens could still take some load.

Table 7	. Failure	modes	for	each	series	of	tests.
	•						

Figure 1 a) Loading arrangement, and b) photo of test set-up with bent specimen.

Figure 2 Typical effect of fiber addition on first crack strength and initial portion of bending stress versus deflection curve for LCC plates with a) Kevlar meshes and b) Spectra meshes.

Figure 3 Effect of adding 1% fibers by volume on bending stress versus deflection response of LCC plates with Kevlar meshes

Figure 4 Effect of adding 1% fibers by volume on bending stress versus deflection response of LCC plates with Spectra meshes

Figure 5 Effect of adding 1% and 2% fibers by volume on bending stress versus deflection response of LCC plates with carbon meshes

Figure 7 Typical hysteretic bending response curves of LCC plates with Kevlar meshes

Figure 6 Typical stress deflection curves of LCC plates: a) reinforced with two layers of FRP mesh (no fibers), and b) same with 1% PVA fibers by volume.

<u>SP- 190</u>

Durability of Glass/Polymer Fibrous Mesh-Reinforced Thin Cementitious Composites

by G. J. Venta and J. F. Porter

Synopsis:

Composite cement boards emerged as some of the more innovative and highly promising engineered building materials. Such materials found their use in construction applications such as tile backerboard or EIFS substrate, where exposure to elements, water or high moisture, prevents the use of conventional gypsum or wood-based products. These cementitious boards, typically 12.7 mm thick, usually consist of an aggregated portland cement-based core matrix, reinforced with glass fiber materials. Virtually all boards developed and manufuactured in North America employ two layers of glass-fiber scrim embedded on both sides of the board, just under the surface. To prevent alkali attack on the glass in the high pH environment of the cementitious matrix, the scrim is coated during manufacture using specially formulated PVC plastisols.

This paper discusses the long-term performance aspects and the comparative assessment of various woven and non-woven plastisol-coated glass fiber fabrics in thin cementitious products. The importance of proper plastisol coating, its formulation, and application, is shown as well. Potential next generation of alternative reinforcements of fabric-faced cementitious boards, such as resistant AR-glass-based scrims and promising, patent pending developments of composite glass/polymer fibrous mesh reinforcement grids in reviewed as well.

Keywords: cement board; glass fiber scrim reinforcement; functional requirements; durability; simulated aging; nonwoven scrim; woven scrim