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(gradual softening) branches.

Measurement of load-shear displacement curve--On the other hand, the relation

between load and shear displacement at load end can be also used to identify the
local 7 - & relation if the shape such as the ones shown in Fig. 4 is assumed a
priori. The load-shear displacement relation at loading end as shown in Fig. 16
may be measured directly with the help of clip gauge (Fig. 3). Moreover, it can be
also obtained through the measurement of FRP strain distribution for whole
loading steps, where the shear displacement can be calculated through the
integration of strain distribution along FRP laminate. Fig. 16 shows some special
points such as occurrence of micro debonding (A), occurrence of macro
debonding (B) and occurrence of final debonding failure (C). Both points (a) (u,,

Py and (B) (u,, P, ) can be considered to correspond to the ones (6,, 7,,,)
and (,, 0) in -6 curve. Therefore, the following expressions can be

obtained easily.

8, =u,, T, =—2— § =y, or § =—'— (13)
P Bkt Eapr,

A redundant equation can be used to verify the accuracy. After occurrence of
macro debonding, the interfacial cracking starts to propagate to the FRP end.
Theoretically, there is no loading increase or decrease during the debonding
propagation from (B) to (C). However, due to the heterogeneities along the FRP-
concrete interface, both case 1 and case 2 as shown in Fig. 16 is observed in the
experiment. Fig. 17 shows the identified result for the specimen S-CFS-400-25,
ie. 4, =0.1mm, 6,, =0.3mm, T, = 8 MPa. The load-shear displacement curve

calculated theoretically based on the identified parameters is also shown in Fig. 17
for comparison with the ones based on measurement of clip gauge and strain
gauge of FRP strain distribution. The 7 - relation identified by this kind of
approach is considered to be more practical.

CONCLUSIONS

From both experimental and analytical studies on bond properties of FRP
laminates the following conclusions are obtained

1) Through the experimental program using both single-lap shear test specimens
and double-lap shear test specimens designed to study the interfacial behavior
of FRP-concrete interface, the load-carrying capacity, FRP strain distribution,
interfacial shear stress distribution and effective stress transfer length affected
by the equivalent stiffness of FRP laminates are quantitatively discussed.
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2) The nonlinear relationships derived for some typical local shear-deformation
curves with and without softening behavior are used to discuss the shear stress
transfer and fracture propagation behavior by comparing with experimental
findings. It is found that the ascending and descending model gives more close
simulation for both interfacial shear stress distribution and effective stress
transfer length.

3) Through the comparison between experimental and theoretical results, the
interfacial fracture energies are quantitfied.

4) The two methods to determine the local shear stress-displacement relationship
are discussed, based on the following experimental results, respectively: a)
Load-shear displacement relation at loading end; b) FRP strain distribution,
through which the local shear-displacement curve can be obtained from the
relationship of shear stresses varying with locations along the interface at a
given appropriate loading step or with loading step at a given appropriate
locations. The identified results by method a) is considered to be practical.
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TABLES
Table 1 Mechanical properties of FRP laminates and concrete
Materials Specific Properties Fiber Arial Design
Characteristics weight g/m? Thickness mm
Comp. Strength
Concrete (Single-lap Shear Test) [57.6 MPa - -
Comp. Strength
(Double-lap Shear Test) [42.0 MPa - -
Young's Modulus 230 GPa 150 0.083
Carbon HT Tensile strength 4.2 GPa 200 0.111
Fiber 300 0.167
Sheet HM Young's Modulus 390 GPa 300 0.167
Tensile strength 4.4 GPa
PBO Fiber |HM Young's Modulus 270 GPa 200 0.128
Sheet Tensile strength 4.5 GPa
Carbon Fiber| HT Young's Modulus 138 GPa 1100 1.0
Plate Tensile strength 2.52 GPa 2200 2.0
Table 2 Specimens used for shear tests
(a) Double-lap shear test
Quality of Stiffness of Fiber Arial Concrete Bond Length No. of
Surface
FRP laminate FRP kN/mm | weight g/m? Preparation L mm Specimens
_ 19.1 150 Diamond 300 D-CFS-150-30
HT Carbon Fiber sander/putty
Sheet 38.4 300 same 300 D-CFS-300-36
76.8 600 same 300 D-CFS-600-30
HM Carbon Fiber Sheet 64.4 300 same 300 D-CFM-300-30
Aramid Fiber Sheet 23.9 280 same 300 D-AR-280-30
(b) Single-lap shear test
Quality of Stiffness of | Fiber Arial | Concrete Surface | Bond Length No. of
CFS CFS kN/mm| weight g/m’ Preparation L mm Specimens
HT Carbon Fiber Sheet 511 400 Diamond 250 S-CFS-400-25
sander/putty
HM Carbon Fiber Sheet 64.4 300 same 250 S$-CFM-300-25
193.1 900 same 250 S-CFM-900-25
HM PBO Fiber Sheet 34.6 200 same 250 S-PB0O-200-25
HT Carbon Fiber 138.0 1100 same 250 CP1-L25
Plate 276.0 2200 same 250 CP2-1.25
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Table 3 Shear test results

(a) Double-lap shear test

Quality of { Stiffness of | Bond Length| Specimens No.of |Max. Load [Max. Debonding|Failure
Specimen
FRP FRP kN/mm L mm kN Load kN/cm  [Mode
laminate
HT 19.1 300 D-CFS-150- 1 24.4 2.44 Debonding
HT 30 2 23.6 2.36 Debonding
HT 3 24.5 2.45 Debonding
Av. 24.1 241 -
38.4 300 D-CFS-300- 1 37.8 3.78 Rupture of FRP
30 2 33.9 3.39 Debonding
3 33.3 3.33 Debonding
Av. 35.0 3.50 -
76.8 300 D-CFS-600- 1 51.3 5.13 Debonding
30 2 50.7 5.07 Debonding
3 54.5 5.45 Debonding
Av. 52.1 5.21 -
HM 64.4 300 D-CFM-300- 1 39.0 3.90 Rupture of FRP
Carbon 30 2 39.0 3.90 Debonding
Fiber 3 32.5 3.25 Rupture of FRP
Av. 36.8 3.68 -
Aramid 239 300 D-AR-280-30, 1 25.5 2.55 Debonding
Fiber 2 25.7 2.57 Debonding
3 23.8 2.38 Debonding
Av. 25.0 2.50 -
(b) Single-lap shear test
Quality of | Stiffness of | Bond Length| Specimens | No.of |Max. Load|Max. Debonding|Failure Mode
FRP FRP kN/mm} L mm Specimen kN Load kN/em
Laminate
HT St1 250 S-CFS-400- 1 15.4 3.84{Debonding
Carbon 25 2 13.9 3.48|Debonding
Fiber 3| 13.0 3.25|Debonding
Sheet Av. 14.1 3.52|-
HM 64.4 250 S-CFM-300- 1 12.0 3.01]Debonding
within adhesive)
Carbon 25 2 11.9 2.97|Debonding
(within adhesive)
Fiber Av. 12.0] 2.99-
Sheet 193.1 250 S-CFM-900- 1 25.9] 6.48| Debonding
25 2] 234 5.85|Debonding
3| 23.7] 5.92{Debonding
Av. 23.5 5.88|-
HM 34.6 250 S-PBO-200- 1 143 3.56{Debonding
PBO Fiber 25 2 12.2 3.04{Debonding
Sheet Av. 13.2] 3.30]-
HT 138.0 250 CP1-L25 1 16.99) 3.40|Debonding
Carbon 2 16.96) 3.39|Debonding
3 17.23 3.45|Debonding
Fiber Av. 17.06 3.41 -
Plate 276.0 250 CP2-1L25 1 22.32 4.46{Debonding
2] 23.69 4.74|Debonding
3| 23.11 4.62] Debonding
Av. 23.04 4.61|-
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