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where ¢, = is the curvature corresponding to the maximum moment which is

calculated by linear interpolation between the cracking curvature(¢, ) and the

yielding curvature (¢, ), as in Fig.1:
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Rearranging Equation (31), the maximum deflection 1s written in terms of the
elastic expression, Equation (28), plus an additional deflection term:
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Equation (33) reduces down to equation (28) when M, < M, by substituting
¢, forg, and L, forL,.
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Post-Yielding Stage:

Upon yielding of the tensile steel, sections in the post yielding stage will
nearly be fully cracked. This assumption is verified to be very accurate since the
effective I, of the section beyond yielding, from nonlinear analysis considering
tension stiffening, is comparable to or less than that of /_ . The mid-span
deflection at any load level after yielding is analytically formulated by
determining the moment of the area under curvature distribution in Fig.3c. This
expression is written in terms of ¢,., ¢, and @,; where the latter is directly related

to the load level:

i = 34 (30 -4La’)- ¢"6L‘ (L,+La)
oL " (34)
e R L [(La® =2 )+1,(La-L,)]
where L, is the length of the unyielded regions of the beam, Fig.3c.
L, =2 35
= h (33)

Rearranging Equation (34) gives:

This is a preview. Click here to purchase the full publication.



https://www.civilenghub.com/ACI/159533645/ACI-SP-210?src=spdf

124 Rasheed et al.

Apitspn = 24 (3L -4La’)+ %[(b (L,+L,)-¢,(L,+ La)]
O (ta-r)(tavL L) (36)

6
where ¢, is the curvature corresponding to the maximum moment of the beam, as

defined earlier. It 1s calculated by linear interpolation between the curvature of
first yielding and that at ultimate moment, Fig.1:

(M,-M )¢,-9¢,)

@, = ' —+9, (37)
(M,-M,)

where M, ¢ M,,¢, are calculated from equations (16), (7), (21) ,(22) or (26),

(27) respectively. Equation (36) can be used as the general equation to calculate
mid-span deflection of simple beams subjected to four-point bending. This
equation reduces down to equation (33) if M, <M,<M . In this case,

L.=La ,p. =¢, are substituted resulting in:
(L,+L,)

Apitn = ;1’4 (37 -4L; )+T(¢(,,L” ~ 9 + ok -9,L,) (38)

which 1s the same as equation (33).

Uniform Load

The same integration above is solved by finding the moment of the area
under the curvature distribution in closed form using the parabolic moment
expressions of the uniform load case. The general solution can be obtained by

summing the deflection contribution of the three regions:
!

Iy 1, B
Amidxpun = 51 + 52 + 53 = jx¢ll/1 ('x)dx + J‘x¢u‘j\f ('x)dx + j X¢.‘_” ('x)dx (39)
0 Iy /

where, ¢, (x),9,_.(x),0, ,(x)are the curvature expressions before cracking, after

v—n

cracking and past yielding.

Precracking Region:
Performing the first integral of Equation (39) analytically:
(L L,
5= 2k (40)
2EI\ 3 4
L L M L .
where L, =———_|1—-——" . In the case of uncracked beam, L, = — leading to:
L2 02 qL L2
SqL'
A, == 41
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Post Cracking Region:
Integrating the second term of Equation (39):
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where L, = ,and L, is given above.

Post Yielding Region:
Carrying out the third integral of Equation (39):

P M 2\ gL L, (12
S, = =0 |59l iers LQV—L— Il +ﬁ L——Lf‘ (43)
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In the case of a post yielded beam, L, L,are given above leading to:

3 L L) ¢, .
- S e (o
mtd\purl ; 2E] (3 4 ] 2 ( ¥ 5)
7"’» P |OLfL L) Mo _py hfL (44)
M. -M, 3 4 2 £ 213 4
g, —9

4 M 2 r L
" M v SqL + v Lz‘ _L_ _ q ¥ £ _ ¢_ = L2
M,-M |38 2| " 4 213 4 2{ 4

To obtain the deflection prior to steel yielding, the &, term is dropped from

equation (44) with L replaced by L/2. Similarly, the deflection before cracking
may be determined by omitting the &, and &, terms from equation (44) and
replacing L, with L/2.

EXPERIMENTAL VERIFICATION

Generating insights on the applicability of the different procedure for
calculating deflections is one the objectives of this study. Different beams with a
variety of properties, tested by others, are analyzed here by using the ACI
equation (1), Modified ACI Equations (3)-(5) and the present procedure. The mid
span deflections predicted by these methods are compared with their
corresponding experimental results. The pertinent geometric and material
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properties of the surveyed beams are summarized in Table 1. All beams are
simply supported subjected to four-point bending.

Beam B2 by Arduini et. al. (15):

Beam B2 was strengthened with a thin CFRP sheet which lead to failure by
FRP rupture, Table 1. It is evident from Fig.5 that the deflections from the present
procedure are in excellent agreement with the experimental results. On the other
hand, the ACI original equation is seen to slightly overestimate the stiffness
resulting in less deflection prior to yielding. The ACI original equation is clearly
not applicable after yielding, confirming similar conclusions reported earlier’.
The ACI modified equations by El-Mihilmy and Tedesco overestimate the
deflections especially at the post-cracking stage. This may be attributed to the

dependence of [, , in equation (3), on the ratio of M / M , . This ratio happens

to be 0.51 for the beam at cracking leading to /,, =1.13/, which is substantially

max

lower than 7, (I, =2I,). This is reflected in Fig.5 by sudden increase in

deflection upon cracking and motivates further investigation of the applicability
of equation (3). The close agreement of the experimental response and the present
analytical response, despite the analysis assumption of perfect bond, is attributed
to the small tensile force transferred to the FRP leading to a low interface shear
stresses and negligible bond slip.

Beam A by Saadatmanesh and Ehsani (16).

Saadatmanesh and Ehsani (16) tested a series of doubly reinforced concrete
beams strengthened by bonding a GFRP plate. Beam A was selected for
comparison. Fig.6 presents the load-deflection curve of beam A. The geometric
and material properties of the beam are given in Table 1. It is clear from the plot
that the curve of the present procedure is slightly closer to the experimental curve
than those of ACI original and modified equations, throughout the whole loading
range. The difference in the yielding load between the present and the ACI
modified method is attributed to the nonlinear response of the beam, which was
accounted for in the present analysis. However, it is evident that the present, ACI
original and modified equations yield comparable deflection calculations. These
are noticeably lower than the experimental deflections. This is attributed to the
bond slip in the adhesive interface. Beam A had a relatively thick and narrow FRP
plate. This is expected to give rise to interface shear stresses due to the higher
tension force transformed across a smaller width leading to higher bond slip in the
absence of additional anchorage systems.

Beam B3.3 by Spadea et al (17):

Fig.7 presents the load deflection response for beam B3.3 strengthened with a
CFRP plate and tested by Spadea etal (17). This beam had steel U-wrap
anchorages along the span to control premature shear failure. This anchorage
system also controlled the bond slip of the FRP plate as evidenced by the
excellent correspondence of the experimental and analytical results, Fig.7. It is
clear from Fig.7 that the predictions of the ACI modified equations are in good
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agreement with those of the present procedure while the latter are still closer to
the experimental response. This is owing to the small ratio of M, / M, bringing

I, in equation (3) closer to /, at the cracking stage. On the other hand, the higher

deflections typically predicted by El-Mihilmy and Tedescos modified ACI
equation after yielding is due to their assumption that the effective section flexural
rigidity at mid span is valid for the entire beam, equation (5).

Beam 2 by Blais and Picard (18)

Fig.8 shows the load-deflection curve for beam 2 strengthened with a GFRP
plate, which was anchored by bolts and tested by Blais and Picard (18), and the
corresponding curves predicted by the three analytical procedures. It is clear from
the graph that all analytical solutions compare very well prior to yielding. The
present calculations appear to be closer to the experimental curve throughout the
loading range especially beyond yielding for the reasons mentioned earlier. This
comparison confirms that the perfect bond assumption is applicable to beams with
FRP plates having additional mechanical anchorage. The softer experimental
response 1n the service load range up to yielding is attributed to some bond slip.

Beams B4 and B10 by Quantrill et al. (3)

Quantrill et.al (3) conducted an experimental study on several beams with
different anchorage systems and modes of failure. Beam B4 has a bonded GFRP
plate without additional anchorage system. The bond slip effect was clear on the
experimental response right from the start before cracking, Fig.9. Beam B10 had a
CFRP plate under the supports to control premature shear failure but yet the mode
failure was described to be of concrete crushing accompanied by plate slip at
plate/adhesive interface. The slip represented by softer experimental behavior was
evident up to failure, Fig.10. The present and the ACI modified analytical
responses are also in good agreement.

PARAMETRIC STUDY

The discrepancy between El-Mihilmy and Tedesco’s modified ACI equation
results and the experimental response in the first example motivated the need to
have a comprehensive parametric study conducted with a wide range of material
and geometric properties. The steel, FRP plate and B/H ratios and the FRP
material type are the main parameters that are expected to have explicit effect on
the post-cracking stiffness of the beam. Therefore, the emphasis was put on
varying these parameters to assess the estimate of the ACI original and modified
equations in comparison with the present analytical procedure. The steel ratio was
varied between the minimum and maximum values specified by ACI 318-99 (11).
The FRP ratio was changed from zero, unstrengthened beam, to its maximum
passing through the ratio that switches the mode of failure from FRP rupture to
concrete crushing. The properties of GFRP plate used are E,,.= 45 GPa and
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Jorrp =400MPa, and those for the CFRP are E ., =400GPa and f,,,,=3000MPa,
corresponding to the material used by Arduini et al. (15) The other material

properties used in this study are those of beam B2 of Arduini et al. (15), Table 1.
All the parameters are varied according to Table 2.

Effect of steel ratio:

To study the influence of p, on load-deflection predictions, high, medium
and low steel ratios (0.0215, 0.013, 0.0045) are selected for use, along with the
rest of the varying parameters, Table 2. In the case of Glass FRP plates, the effect
of p, is similar for the different FRP and B/H ratios. To illustrate this effect, B/H

=0.75 and p,,,=0.00147 are selected as typical values and the variation of the
beam effective moment of inertia is plotted using the three different procedures. It
can be seen from Fig.11 that the modified ACI equations compare closely to the
variation of the present procedure for the high steel ratio Fig.11a. However, as the
steel ratio reduces, the modified equation curves show higher discrepancy by
sudden reduction in /, upon cracking due to reducing the yielding moment

involved, as explained earlier, see Figs.11b-c. It is worth mentioning that the
mode of failure changes from concrete crushing in the case of high steel ratio to
FRP rupture for the other two cases.

This behavior is slightly changed by changing the FRP material to Carbon. In
this case, the same steel ratios as well as the FRP and B/H parameters above are
used. It is evident from Fig.12a that the high steel ratio causes /,, of the modified
equations to be higher than that of the procedure proposed herein. This is
attributed to the significantly higher CFRP modulus compared to that of GFRP
causing less tension force to be carried by the steel, which increases the yielding

moment leading to higher estimates of /,,

(3). As the steel ratio reduces, the 7, curve of the modified equation gets closer

from the empirical modified equation

to that of the present procedure then pass it to the softer side exhibiting the very

same sudden drop in 7, upon cracking, Figs12b-c. The ACI original equation is

seen to underestimate /,, for higher p  values and compare well with the 7, of

the present procedure for small p, ratios with p,.,., =0.00147. It is clear, however,
that all the curves of the present procedure shown in Figs.11-12 have a smooth
continuous trend similar to that of 7, from the original ACI equation. The

comparison of the three procedures for unstrengthened beams i1s discussed
separately below.

Effect of FRP Ratio:

The second parameter studied is the FRP ratio. In the case of GFRP, it is
found that the modified procedure by El-Mihilmy and Tedesco (10) generally
provides lower estimates of the beam effective moment of inertia [‘)_// than those

of the present procedure for lower FRP ratios. These estimates converge towards
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the present /,, curve as the FRP ratio is increased. This is due to the higher

tension force carried by the strengthening plate for higher FRP ratios causing M,
to be higher and, thus, /,, for the modified equation to be higher, equation (3).

Figs.13 a-g illustrate this clearly for the case of B/H=0.75 and the smallest steel
ratio ( p, =0.0045) with p,,,=0-0.011<p,,, . The discrepancy between the two

curves reduces with the increase of p,, as mentioned earlier. The curve of the

modified procedure reproduces very closely the present analysis curve for
p,=0.0215. On the other hand, the curve of the original ACI code equation

appears to be in very good agreement with the present /,, curve up to steel

yielding, after which the ACI original equation is not applicable. As mentioned
above this agreement prior to steel yielding gets poorer as p, is increased.

The same effect is studied in the case of CFRP indicating different
observations, Fig.14. The comparison of the curve of the modified and present
procedure is similar to that of GFRP for the small steel ratio. However, the curve
of the modified procedure seems to change course to overestimate the /,, for the

high steel ratio due to the higher M, and hence higher 7/, from equation(3).

e

Figs.14.a-e show the comparison for B/H=0.75, p ,=0.0215 and p,,,=0-
0.0065< ppyp,.. - It is evident in this case that the two curves match in the case of

unstrengthened beam, Fig.14a. However, the curve of the modified equations'

starts shifting to the right with higher /,, predictions (stiffer beam) as p,,, is

increased, Fig.14b-c. Significant discrepancy is observed for p,,,>0.004,
Figs.14d-e.
The ACI original 7, equation compares well with the curve of the present

procedure for the low FRP ratios Fig.14a-b but diverge towards the stiffer side for
higher p,,, ratios way prior to steel yielding Fig.14c-e. This is attributed to the
limitation of the ACT original equation to the lower bound prediction of 7, =1, .
The high steel ratio, high FRP ratio and high FRP modulus delay the yielding of

steel engaging the nonlinear response of concrete in compression prior to the
occurrence of yielding. This causes the beam 7, to reduce noticeably below 7,

e

upon steel yielding.

Effect of section Aspect Ratio (B/H):

The effect of the section aspect ratio is also studied. B/H of 0.5, 0.75and 1 are
used in the comparison for both the GFRP and CFRP plate. It is observed that this
parameter has a negligible effect on the correspondence of the three 7, curves in
the case of Glass and Carbon FRP, Figs. 15a-c and Fig. 16a-c. This is attributed to
the fact that the /./I, ratio and the M,/M, ratio are almost constant for the
different B/H ratios when p, and p,,, are held constant.
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Effect of FRP Material:

The effect of changing the FRP material type from Glass to Carbon is very
important. It may be easily observed from the graphs discussed above that the use
of Carbon FRP tends to make the modified equation (3) proposed by El-Mihilmy
and Tedesco overestimate /,, while it tends to underestimate/,, for Glass FRP
with lower p, ratios, Figs.13-14. This is caused by the significantly higher
stiffness of Carbon FRP, for the same p, and p,,,, causing less force to be
carried by the steel leading to higher M, and 7, estimate, see equation (3). The

opposite is true for Glass FRP.

Effect of Unstregthened Beams:

The parametric study covers unstrengthened beams as well. It is obvious
from Figs. 17 and 18 that the modified ACI equations correlate well with the
present analysis results for high p, and significantly underestimate /,, for low
P, - This is attributed to the lower M, values causing larger M.,/M, ratios leading
to unrealistically low /,, estimates at cracking in cases of low p, ratios. On the
other hand, the ACI original equation underestimates [, for high p  and
overestimates [, for low p values in the service load range. This is due to the

empirical exponent selected for equation (1).

Practical Deflection Calculations:

Along with the variation of the parameters mentioned in Table 2, different
La/L ratios (0.275, 0.35, 0.44), different ﬁ' (30, 35,45 MPa) and f, values (340,
400, 450 MPa) are used to cover a wider range of parameters for load-deflection
calculations based on the present rational procedure. As shown in Fig. 19, a linear
relationship between the normalized cracked section moment of inertia (/,./1,)

/1,)

exists regardless of the linear or nonlinear critical section response at yielding.
Similarly a linear relationship between section and beam moments of inertia at
ultimate load (7, and [, ) is obtained when these parameters are properly

and the normalized effective beam moment of inertia at first yielding (7,

normalized by (/,.p,), Fig. 20. Accordingly, the ACI original equation will be

improved here to reproduce more closely the post-cracking and post yielding
response predicted by the present rational procedure. The first improved equation
will be used to calculate the deflection prior to first steel yielding:

M(,‘I' 3 M(‘l' 3 T
19” :[Mmax ] lg ' [l _( Mmax ] ]14/.." (45)
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(46)

oy 3

Equation (46) makes 7 from equation (45) converge to I, at first yielding.
Similarly, an improved /requation is proposed for the post-yielding region:

M, Y M, Y |-
IU//‘ :( Mmax ] Ie//v ! [1 _( MmaX ] ]]U” ’ (47)

MY
Ly, = ﬁ Ly,

n

where 7, =

eff n M : 3
1- .
Mﬂ

The improved equations (45) and (49) will be used for practical design
calculations with /.5, and /., computed from the equations in Figs. (19-20).

Five examples representing cases of extreme discrepancies in the parametric
study are selected to examine the predictions of the improved ACI equations (45)
and (47) proposed herein. The first example has B/H=0.75 and a low
reinforcement stiffness (p, =0.0045, GFRP with p,,, =0.00147). Fig. 2la

shows the modified ACI equations to significantly underestimates /.4 while the
ACI original equation slightly overestimates it. On the other hand, the improved
equations show excellent agreement with the rational procedure, Fig. 21a. The
second example has B/H=0.75 and a very high reinforcement stiffness
(p, =0.0215, CFRP with pp,, =0.0065). Fig. 21b has both the modified and
original ACI equations overestimate [, while the improved ACI equations
compare closely to curve of the rational procedure. The third example has
B/H=0.75 and an intermediate reinforcement stiffness ( p, = 0.0215, CFRP with

(43)

Py =0.00147). Fig. 21c shows both the improved and original equations to
closely match and slightly underestimate [, while the modified equations
compare very well to the rational procedure. However, this is not a typical
comparison for other intermediate reinforcement stiffness values. The last two
examples are solved for unstrengthened beams. The fourth one has B/H=0.5 and a
low reinforcement ratio (p, =0.0045). Fig. 22a shows excellent agreement
between the ACI equations improved here and the rational procedure, which is
not the case for the other equations. The fifth example has B/H=1 and a medium
reinforcement ratio (p, =0.013). Fig. 22b shows the improved equations to
provide no advantage over the ACI original equation since the effective beam
moment of inertia at yielding 1s almost equal to /..
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SUMMARY AND CONCLUSIONS

In this study, a rational procedure was developed to analytically predict the
load-deflection response of reinforced concrete beams strengthened with FRP
plates. This procedure is based on the assumption of trilinear moment-curvature
relationship, verified to be very accurate by experimental results. The three key
section parameters, (M@, M,-¢, and M,-¢,), are determined from detailed
section analysis. The moment-curvature relationship is used to express the
curvature distribution along the beam in three distinct regions, the pre-cracking,
the post-cracking and the post-yielding respectively. This curvature distribution is
integrated analytically for closed form mid-span deflection expressions in the case
of four-point bending and uniform load.

The results of the present procedure, along with those of the ACI original 7,

equation and a modified version of it, are compared for a wide range of
experimental load-deflection curves showing excellent agreement of the results of
the present procedure for properly anchored FRP plates.

A parametric study is conducted to qualify the applicability of the ACI
original and modified /,, equations relative to the results of the present procedure

for a wide spectrum of geometric and material properties.

The results of the parametric study show that the higher the reinforcement
stiffness (i.e. Pyeer, Prrr, and Epgp) the higher the I, estimate by the modified
equations leading to stiffer deflection predictions and vice versa. The higher
reinforcement stiffness also leads to stiffer /,; by the ACI 318 equation in the
range of service to yielding load level due to its lower bound limit of /.. Low
steel ratios cause the ACI 318 equation to accurately predict 7, while high steel
ratios cause it to underestimate [, for unstrengthened beams between the
cracking and service loads.

Improved versions of the ACI 318 equation are proposed to closely reproduce
the results of the rational procedure using practical calculations. These are based
on the linear correlation of the /,and 7, atyielding as well as 7, of the critical

section and 7, of the beam at failure obtained from the parametric study.

eff n

Notation:

A’s  area of compressive steel.

A, area of tensile steel

Ay FRP plate area.

Ec  initial modulus of concrete.

Jfy  ylelding stress of the steel (MPa).

fr stress in the FRP plate when tensile stress yields(MPa).

h height of the section

Iy beam effective moment of inertia.

Iy beam effective moment of inertia at yielding based on rational procedure.
lyn  beam effective moment of inertia at ultimate based on rational procedure.
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