REFERENCES

- ACI. 2005. Mass Concrete, ACI 207.1R-05, American Concrete Institute, Farmington Hills, MI.
- ACI. 2001. Control of Cracking in Concrete Structures, ACI 224R-01, American Concrete Institute, Farmington Hills, MI.
- Reclamation. 1981. Control of Cracking in Mass Concrete Structures, Engineering Monograph No. 34, U.S. Department of the Interior, Bureau of Reclamation, Denver, CO.
- ACI. 1991. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, ACI 211.1-91, American Concrete Institute, Farmington Hills, MI.
- Reclamation. 2009. Thermal Properties Study: Hinze Dam Stage 3 Spillway Raise, Technical Memorandum MERL-08-09, Technical Services Center, U.S. Department of the Interior, Bureau of Reclamation, Denver, Colorado.
- ANSYS, Inc. 2007. ANSYS Engineering Analysis System User's Manual, Houston, Pennsylvania.
- Jones, Scott, Hughes, David, Todaro, Salvatore, and O'Brien, Steve. 2008. "Finite Element Analysis for Concrete Interface Treatment at the Hinze Dam Spillway Crest Structure Stage 3 Raise," 28th USSD Annual Meeting and Conference, April 28-May 2, Portland, OR.
- Jones, Scott, Hughes, David, Bartojay, Katie, Travers, Fred, Todaro, Salvatore, Werner, Orville, and Dann, Christopher. 2008. "Finite Element Analysis for Concrete Interface Treatment at the Hinze Dam Spillway Crest Structure Stage 3 Raise," Dam Safety 2008: Proceedings, September 7-11, Indian Wells, CA.

TABLES AND FIGURES

List of Tables:

Table 1 - Measured Thermal Properties of Mass Concrete

 Table 2 – Mass Concrete Mix Compressive Strength and Elastic Properties – 6 x 12 in

Cylinders

 Table 3 – Mass Concrete Mix Compressive Strength and Elastic Properties – 10 x 20 in

 Cylinders

List of Figures:

- Figure 1 Aerial Photograph of Hinze Dam Spillway Prior to Construction
- Figure 2 Aerial Photograph of Hinze Dam Spillway during Construction
- Figure 3 Upstream Elevation of Stage 3 Spillway Raise
- Figure 4 Stage 3 Spillway Raise High Level Spillway Monolith
- Figure 5 Adiabatic Temperature Rise from Reclamation Tests
- Figure 6 FE Model of Spillway Maximum Section
- Figure 7 Adiabatic Temperature Rise Curves
- Figure 8 Temperatures Computed in Final Design Studies
- Figure 9 Typical Computed Temperatures in Mass Concrete Lifts
- Figure 10 Comparison of Measured and Computed Temperatures (Final Design Study)
- Figure 11 Temperatures Computed in Construction Support Studies
- Figure 12 Comparison of Measured and Computed Temperatures (Construction Support

Study)

- Figure 13 Variation of Modulus of Elasticity vs. Time
- Figure 14 Interface Stresses Computed in Final Design Study

Concrete Temperature, °C [°F]	Specific Heat, J/kg·°C [Btu/Ibm·°F]	Diffusivity, m²/hr [ft²/hr]	Conductivity, W/m·K [Btu/ft·hr·°F]
10 [50]	1057 [0.250]	0.0039 [0.042]	2.67 [1.59]
37.7 [100]	1133 [0.268]	0.0035 [0.038]	2.59 [1.54]
65.5 [150]	1209 [0.286]	0.0033 [0.035]	2.55 [1.52]

Table 1 – Measured Thermal Material Properties of Mass Concrete

Table 2 – Mass Concrete Mix Compressive Strength and Elastic Properties – 6 x 12 in

Cylinders

	3-day	7-day	28-day	56-day	180-day	1-year
Compressive Strength,	6.9	9.9	15.4	18.0	24.0	30.4
MPa [lb/in ²]	[1000]	[1440]	[2240]	[2620]	[3490]	[4410]
Elastic Modulus GPa [psi	18.0	23.3	25.1	28.5	31.1	34.4
x 10 ⁶]	[2.61]	[3.39]	[3.64]	[4.14]	[4.51]	[4.99]
Poisson's Ratio	0.17	0.22	0.21	0.18	0.21	0.20

Table 3 – Mass Concrete Mix Compressive Strength and Elastic Properties – 10 x 20 in

Cylinders

10x20	28-day	56-day	180-day	1-year
Compressive Strength, MPa	15.0	18.8	23.8	28.9
(lb/in ²)	[2170]	[2720]	[3450]	[4200]
Elastic Modulus GPa	23.2	26.5	28.5	34.0
(lb/in ² x 10 ⁶)	[3.36]	[3.84]	[4.13]	[4.93]
Poisson's Ratio	0.15	0.19	0.20	0.20

Figure 1 – Aerial Photograph of Hinze Dam Spillway Prior to Construction

Figure 2 – Aerial Photograph of Hinze Dam Spillway during Construction

Figure 3 – Upstream Elevation of Stage 3 Spillway Raise

Figure 4 - Stage 3 Spillway Raise High Level Spillway Monolith

Figure 5 – Adiabatic Temperature Rise from Reclamation Tests

Figure 6 - FE Model of Spillway Maximum Section

Jones et al.

Figure 7 – Adiabatic Temperature Rise Curves

Figure 8 – Temperatures Computed in Final Design Studies

Figure 9 – Typical Computed Temperatures in Mass Concrete Lifts

Figure 10 - Comparison of Measured and Computed Temperatures (Final Design

Study)

Figure 11 – Temperatures Computed in Construction Support Studies

Figire 12 - Comparison of Measured and Computed Temperatures (Final Design Study

in Black, Construction Support Study in Red)

Figure 13 – Variation of Modulus of Elasticity with Time