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Failure Mechanisms and Fracture 

of Fiber Reinforced Concrete 

by V. Gopalaralnam and S. Shah 

Synopsis: Several types of failure mechanisms and fracture of 
fiber reinforced concrete (FRC) composites are discussed. These 
include; mulitple fracture of the matrix prior to composite 
fracture; catastrophic failure of the composite immediately 
following matrix cracking due to inadequate reinforcing; fiber 
pull-out following matrix cracking providing significant energy 
absorption with or without substantial strengthening of the 
matrix; and fracture of short fibers bridging the matrix crack 
without multiple fracture of the matrix. Aspects relating to the 
modelling of the two major causes for nonlinearities associated 
with fiber concrete composites, namely interfacial bond-slip, and 
matrix softening are also discussed. Analytical models available 
for predicting the tensile response of such composite are 
examined in light of the above mechanisms of failure. 

Keywords: bonding; composite materials; cracking (fracturing); 
crack width and spacing; failure mechanisms; fiber reinforced 
concretes; mathematical models; pullout tests; strains; tensile 
strength 
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INTRODUCTION 

Potentially useful improvements in the mechanical behavior 
of tension-weak concrete (or mortar) matrices can be effected by 
the incoportation of fibers. The resulting interest in and 
research on fibrous concrete composites has led to an improved 
understanding of the mechanics of composite behavior under 
various simple modes of loading. Similar to the behavior of 
plain concrete, composite failure under most types of loading is 
initiated by tensile cracking of the matrix along planes where 
normal tensile strains exceed corresponding permissible valves. 
This may be followed by multiple cracking of the matrix prior to 
composite fracture, if the fibers are sufficiently long (or 
continuous). However when short strong fibers (steel, 
polypropylene, glass etc.) are used to reinforce brittle matrices 
(concrete, mortar etc.), once the matrix has cracked, one of the 
following types of failure will occur: 

(a) The composite fractures immediately after 
cracking. This results from inadequate fiber content 
critical section or insufficient fiber lengths to 
tensile stresses across the matrix crack. 

matrix 
at the 

transfer 

(b) Although the maximum load on the composite is not 
significantly different from that of the matrix alone, the 
composite continues to carry decreasing loads after the peak, 
The post-cracking resistance is primarily provided by pulling out 
of fibers from the cracked surfaces. Although no significant 
increase in the composite tensile strength is observed, a consid­
erable increase in composite fracture resistance (or toughness, 
computed as area under the stress-displacement curve) can be 
obtained. 

(c) Even after matrix cracking, the composite continues to 
carry increasing tensile stresses; the peak stress and 
corresponding deformation are greater than those of matrix alone. 
During the inelastic range (between the matrix first crack stress 
and the composite peak stress) for type (c) behavior, progressive 
debonding and frictional slip at the fiber-matrix interface and 
some additional matrix cracking occur. It is clear that this 
mode of failure results in an improved performance of both the 
matrix and the fibers. 
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Analytical models used for the prediction of the mechanical 
behavior of fibrous concrete composites may be suitable for one 
or more of the above types of failure mechanisms. Based in part 
on the fundamental approach in their formulation, analytical 
models can be categorized as; models based on the theory of 
multiple fracture; composite models; strain relief models; frac­
ture mechanics models; interface bond models and micromechanics 
models. 

MULTIPLE FRACTURE OF THE MATRIX 

The law of mixtures approach has been used extensively to 
model the elastic behavior of many types of fibrous composites. 
Transformed elastic section for the analysis of conventional 
reinforced concrete is infact based on the law of mixtures. 
Prior to cracking the effective composite modulus for a composite 
containing continuous aligned fibers can be expressed as 

(1) 

where E and V are the modulus of elasticity and volume content of 
the constituents identified through the subscripts: f for the 
fiber, m for the matrix and c for the composite. At loads beyond 
that causing the matrix to crack, relative displacement between 
steel and concrete is responsible for the crack-widths observed, 
As a result iso-strain assumptions of the law of mixture are 
violated, Tensile load transfer through bond stresses from the 
fiber to the matrix is achieved away from the crack. Due to 
further increases in load, additional matrix cracks will develop 
when the tensile strength of concrete is again exceeded. No more 
cracks can be formed when the distance between the existing 
cracks is not sufficient to transfer (by bond) the tensile force 
great enough to exceed the tensile strength of concrete (a ), 
If uniform bond stress ( T) is assumed, then the minimum 
spacing can be calculated as 

X ' m1.n 

V cr r 
m mu 

2V £' 

(2) 

where r is the radius of the fiber and a is the tensile 
strength of matrix. The maximum crack is twice the 
minimum [1]. After multiple cracking has occurred, neglecting 
the tensile stress carrying capacity of the matrix, effective 
composite modulus may be obtained as 

E = E V 
c f f 

(3) 

The composite stress-strain characteristics is thus at this third 
stage of loading, proportional to that of the fiber. Composite 
failure occurs when the fibers fracture or yield. Aveston, 
Cooper and Kelly [1] have proposed a tensile stress-strain 
relationship similar to that described in Eqns. 1-3, for glass 
fiber reinforced concrete (GFRC). Assuming uniform distribution 
of bond stresses and the crack spacing given by Eq. 2, they have 
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proposed the following equation for computing the enhanced matrix 
cracking strain Emu 

£ = 

mu E E2 r V 
c m m 

(4) 

where ym surface energy of matrix fracture, and all other 
quantities are as defined earlier. This equation was obtained by 
considering the changes in energy that occur when a crack is 
formed across a tensile specimen. It was assumed that a crack 
will form when the sum of the work of fracture of the matrix, the 
energy absorbed due to friction at the fiber-matrix interface, 
and the increase in elastic energy in fibers is exceeded by the 
sum of the work done by the applied sresses and the elastic 
energy released by the matrix. Assumptions with regard to 
uniform bond, and ignoring the tensile capacity of the the 
matrix, are not justified for such composites as discussed later. 
Additionally Eq. 4 is more sensitive to the fiber volume content 
than observed experimentally [2,3], 

Aveston and Kelly [4] have further extended the model of 
Aveston et. al. [1] to include analysis of continuous 
fibers which are elastically bonded (non-uniform bond stress) to 
the matrix. The elastic solution of this problem is similar to 
solutions obtained by Cox [5] and Piggot [6] (which is discussed 
later), Also included in the modified model are considerations 
for the effects of random fiber orientation in 2-D and 3-D 
spaces, Expressions derived for crack spacing, however, still 
assume fibers long enough to be treated continuous. The 
difference in strains predicted by the much simpler model 
assuming frictional bond is not significantly different than that 
predicted by the modified model assuming elastic bond, to warrant 
the more cumbersome computations. 

COMPOSITE MODELS 

Cox [5] has analyzed the effect of orientation of the fibers 
on the strength and stiffness of paper (also a fibrous 
composite), For discontinuous fibers in a 2-D random 
distribution the composite modulus, E , has been determined to be 
E V /3 and the composite strength caf Vf/3. For a 3-D random 
dtstrtbution these values are Ef Vf/8 and af Vf/6 respectively. 
In Cox's case, the length of the discontinuous fiber was assumed 
to be longer than the critical transfer length, , whereby 
composite failure is by fiber fracture rather than by fiber pull­
out Fig, la. 

Jayatilaka (7] has further discussed stress distributions 
likely if the fiber length is less than, equal to, or larger than 
the critical fiber length if a purely frictional shear transfer 
at the interface is assumed (constant T), For the case in which 

https://www.civilenghub.com/ACI/161465778/ACI-SP-105?src=spdf


Fiber Reinforced Concrete 5 

the fibers deform elastically and the matrix deforms plastically 
he has obtained an expression for the composite modulus, E , 
using an average fiber stress solution similar to Cox. It should 
be noted that the composite failure mechanism assumed by 
Jayatilaka is still by fracture of fibers. 

Piggot [6] has extended the work by Cox, to develop fiber 
and interface stress s·olutions for fiber reinforced polymers and 
reinforced ceramics and cements when the interfacial bonding is 
elastic-frictional (constant T ) and elastic-nonlinear 
frictional respectively. The expressions for axial fiber stress 
and interfacial shear stress are more involved than those pro­
posed by Cox, but as the nonlinear aspect of interfacial shear is 
incorporated in this model, composite tensile stress-strain 
behavior predicted exhibits nonlinearities observed in practice. 
The matrix and fibers are treated to be in a purely elastic state 
until the onset of interfacial bond degradation. Figs. lb and c 
illustrate the fiber axial stress and interfacial shear stress 
distributions obtained by Piggot for the case of fiber reinforced 
polymers and fiber reinforced ceramics respectively. The phenom­
enon of slip introduced by Piggot will be useful in modelling the 
behavior of steel fiber reinforced cement composites, as de­
scribed later. 

Naaman, Moavenzadeh and McGarry [8] have analyzed FRC 
probalistically for its tensile strength and post-cracking char­
acteristics. Representing a tensile member as a chain link 
series they have obtained expressions for weakest link as 

'jj 'jj (1 V ) +a 'T 
II, 

- vf T cc mu f 

a =:!....v 
II, (5) 

cu 11 f T 
y y 

(1 
- II, - v )+rJ -

c mu f cu 12 

where all "bar" quantities signify average quantities: a 
composite cracking strength, a =matrix tensile strength,cc, 
bond strength from single test, a = composite 
post cracking strength yc = composite surface y 

matrix surface energy II, , fiber length and diameter, andmg 
empirical constant. 

Depending upon the number of fibers pulling out from a unit 
area the composite cracking strength is obtained using an a 
value of 0.122 determined empirically. The model predicts a 
linear increase in both the cracking stress and post-cracking 
strength of FRC composites with an increase in the volume 
fraction and aspect ratio of the fibers. Strains or deformations 
at cracking and post-cracking strength levels cannot, however, be 
predicted using the model. 
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STRAIN RELIEF MODELS 

The name for this category of models has been chosen because 
they essentially assume an elliptical zone around the crack to be 
partially relaxed. Outside the partially relaxed elliptical zone 
the material is assumed to be unaffected by the presence of the 
crack. Uniform uniaxial loading perpendicular to the plane of 
the crack and parallel to the direction of reinforcement is 
considered. Only strains parallel to the direction of loading 
are considered and shear interactions between the adjacent zones 
together with stress concentrations at the crack tips are 
neglected. For the unreinforced matrix, a linear change in 
strain is assumed parallel to the direction of loading from the 
crack face to the extremities of the elliptical zone. The size 
of the elliptical zone is chosen such that the strain energy 
released by the presence of the crack on the basis of the assump­
tions made, is the same as calculated by Griffith [9] for the 
classical case of crack in an infinite elastic material. 

Korczynskyj, Harris and Morley [10] and Hannant, Hughes and 
Kelly [11] have extended the idea to study the influence of 
strong reinforcing fibers on the growth of cracks in brittle 
matrices. The strain-field in fibrous composites unlike in the 
unreinforced matrix, is modified by the presence of crack bridg­
ing fibers. The essential difference between Korczynskyj et.al. 
[10] and Hannant et. al. [11] is in the strain-field assumed 
within the elliptical zones. Fig. 2 shows the strain-field 
assumed by Hannant et. al. [11] The fibers are assumed to be 
sufficiently longer than the crack length and are assumed to be 
uniformly distributed and aligned perpendicular to the crack 
(parallel to the loading direction). Stress is transferred 
between the fibers and the matarix via the fiber matrix interface 
which is assumed to be purely frictional (constant shear transfer 
). As a result of these assumptions the fiber and matrix strain 
distributions within a strip of the elliptical zone are as shown 
in Fig. 2. 

Numerically the crack propagation problem is evaluated thus. 
The elliptical zones are divided into a number of strips, perpen­
dicular to the crack. Only one quadrant of the ellipse is ana­
lyzed due to the two axes of symmetry. For a given crack length 
and farfield tensile strain the energy stored within these strips 
by the fibers and matrix are easily evaluated once the strain 
fields are established. The energy released, U , due to the 
presence of the crack can be evaluated by cummulatlng the contri­
butions of the individual strips. Similarly the energy absorbed 
by friction, Uf, due to the difference in the matrix and fiber 
strains within ellipse L1 can be computed. U and Uf are again 
evaluated for the same farfield tensile straln, for a small 
increment o c in the crack length, and thus the rate of energy 
released o Ur/oc can be computed. If the rate of energy released 
is not greater than that absorbed, the farfield matrix strain is 
incremented and the procedure repeated until the condition of 
catastrophic crack growth is achieved. The castastrophic crack 
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growth condition in the modified matrix is given by 

ou ouf 
__J;,>-+G V 
oc oc em m 

(6) 

Where Gem is the Griffith's critical strain energy release 
rate for the unreinforced matrix. The corresponding farfield 
matrix strain, £ , that just satisfies Eq. 6 is the "enhanced 
matrix failure strllfYn" as a result of incorporation of fibers in 
the matrix. Constant bond stress and a traction free crack are 
assumed in the model. It is also very sensitive to the initial 
flaw size c assumed [2,3]. 

FRACTURE MECHANICS MODELS 

Two broad classes of models can be identified among those 
developed using fracture mechanics concepts. The more fundamen­
tal class of models use concepts of classical linear elastic 
fracture mechanics (LEFM) or modified LEFM to solve the problem 
of crack initiation growth and stability under a farfield tensile 
loading. The others, do not attempt to predict the global com­
posite behavior under tensile loading mode, but rather use its 
tensile post-peak stress-displacement relationship to model crack 
growth in the composite under other loading configurations. This 
class of model is popularly labelled as the fictitious crack 
model (FCM). 

The mechanics of crack arrest in concrete reinforced with 
small diameter steel wires was studied by Romualdi and Batson 
[12]. Superimposing simplified solutions for a penny shaped 
crack in an infinite matrix subjected to farfield tension and the 
equilvalent restraining effect of adajcent fibers (arranged in a 
square array and aligned in the loading direction) they obtained 
the effective stress intensity factor for cracks in fibrous 
composites. Implicit in their analysis is the assumption of a 
perfectly bonded fiber-matrix interface during the crack propaga­
tion process. Applying concepts of linear elastic fracture me­
chanics and adopting a critical stress intensity factor criteri­
on, they have noted that the cracking stress (stress at which the 
crack propagates beyond the bounds of the adjacent fibers) is an 
inverse function of the square-root of fiber spacing. Romualdi 
and Mandel [13] have verified the fiber spacing concept based on 
splitting tension and flexural (3 point bending) tests on compos­
ites with randomly distributed short steel fibers. The applica­
bility of LEFM using a single parameter fracture criterion for 
small crack lengths (corresponding to fiber spacing) has been 
questioned by Shah and Rangan [14] and Jenq and Shah [15]. 

Kasperkiewicz [16] has proposed a novel approach to modeling 
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the tensile fracture of unreinforced and fiber reinforced cement 
composites. Matrix inhomogeneity is accounted for in his frac­
ture model by making the surface energy a function of location, 
thus 

y f (x) = y + 1. - y - 1. 
2 2 

cos 
21fX 

->.- (7) 

where Y , Y are bounds of the variations of the local surface 
energy, A , a material periodicity parameter to account for 
a representative volume in the inhomogeneous composite. A ten­
sile specimen of matrix is considered to comprise a series of 
initial flaws of size c • Using the Griffith criterion for 
stable crack growth in to assumptions regarding energy 
absorption in a cycle of unloading/reloading in concrete mater­
ials he has obtained solutions for relating the average tensile 
stress to crack size and the overall displacement of a finite 
sized tensile specimen. Softening behavior predictions for the 
matrix in tension have been accomplished qualitatively using 
these solutions. For the FRC specimens an additional term to 
account for energy absorbed during fiber pull-out has been incor­
porated to yield relationship between average tensile stress and 
corresponding displacements. The model, it should be noted, has 
only been used to qualitatively describe trends in softening 
behavior observed, It is quite sensitive to some of the assumed 
model parameters. 

The fictitious crack models for fiber cement composites have 
been formulated, using approaches similar to the cohesive force 
model of Barenblatt [17] or the simpler plastic yielding model of 
Dugdale [18], The major differences are eventually in the singu­
larity assumptions at the crack tip, the criteria used for crack 
initiation and growth, and the stability of crack growth. A 
Fictitious Crack Model (FCM) has been proposed by Hillerborg [19] 
for fracture analysis of FRC, Fig. 3, The fracture zone (analo­
gus to the plastic zone for metals) ahead of the real crack is 
assumed to act as a "fictitious crack" which has the ability to 
transfer stresses, Instead of conventional fracture parameters, 
the tensile stress-displacement curve of the composite is intro­
duced to describe the behavior of the fracture zone. Elastic 
stress-strain relations are used to describe the behavior of 
zones outside the fracture zone. Incorporating the FCM in a 
finite element scheme, Hillerborg has shown that general trends 
observed from experiments on the flexural behavior of notched and 
unnotched FRC beams can be reproduced. Petersson [20] has used 
the FCM to study crack growth and development of fracture zones 
in plain and fiber reinforced concrete notched beams, 

Wecharatana and Shah [21,22] have modelled the process zone 
ahead of the real crack in a similar fashion, with the closing 
pressure function determined experimentally. Unlike the Dugdale 
model, however, no assumptions have been made with regard to the 
singularity at the crack tip. An iterative procedure is set-up 
to determine the size of the process zone so that the predicted 
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Crack Tip Opening Displacement (CTOD) at a particular load 
matches the experimentally observed CTOD at the load level. The 
strain energy release rate has been modified in their formulation 
to account for slow crack growth as well as residual deformation 
(analogous to plastic deformations) on unloading. Resistance or 
R-curves (plot of strain energy release rate versus crack exten­
sion inclusive of the proces zone) thus predicted for concrete 
and FRC compare well with experimentally obtained R-curves for 
different specimen sizes and geometries, namely: Double 
Canatilever Beam (DCB), Double Torsion (DT) and notched beam 
specimens. While simple to use in numerical computations the 
model does not incorporate conditions for crack stability. 

Visalvanich and Naaman [23] have used the R-curve concept to 
model fracture of FRC. They use (i) an empirical stress­
displacement relation for the stress transfer during fiber pull­
out, ahead of an actual crack, and (ii) a straight line crack 
profile in this pseudo-plastic region as the basic data needed to 
generate the R-curve. Crack propagation is said to occur when 
the crack opening angle reaches a critical value (termed CCOA). 
The CCOA determined empirically, varies from 0.13° for plain 
mortar to 0.29° for some fibrous composites. The size of the 
pseudo-plastic zone varies from 6.35 em - 226 em. These are 
undefined functions of the composition of the composite (Vf and 
t/d of the fibers). The CCOA cannot as a result be prescribed a 
priori, which might restrict the use of the model. 

Stang and Shah [24] have studied the fracture by fiber pull­
out of composites made with continuous fibers aligned in the 
loading direction. The debonded zone is treated as an interfa­
cial crack. Griffith type criterion is used for the growth of 
interfacial crack, yielding: 

ClC (P )2 
()b cr 

(8) 

where P r = critical pull-out load for crack growth, y i = speci­
fic in£erfacial work of fracture, b = length of the debonded 
interface, a fiber radius, and C is the compliance of the 
single fiber pull-out specimen. Thus knowing the maximum load 
one can calculate yi which is the material property character­
izing the interface. The accuracy of the above equation was 
demonstrated by measuring changes in compliance resulting from 
artificially introduced debonded zones of different lengths [25]. 
In addition, methods to include frictional energy and calibrate 
the model parameter from the pull-out test was also discussed in 
[25]. This approach provides an alternative method of analyzing 
the results of the pull-out test in terms of fracture energy 
rather than bond strength (this method is discussed later). 

the 
Readily 
elastic 

available assymptotic solutions have been used for 
compliance, C, of the fiber pull-out specimen 
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2 
containing (i) rigid fibers ((E /E ) ) 2n (2 and 

and (ii) elastic fibers ) ln (2 and 
the fiber length and Ef E are as defined earlier. 

The compliance of the single fiber problem has been 
built upon to yield the compliance of an idealized tensile 
specimen containing one major matrix crack, Fig. 4. Interfacial 
cracks are present at this stage up to a distance b on either 
side of the matrix crack along the continuous fibers aligned in 
the loading direction. The criterion for crack growth (Eq. 8) is 
once again applied to the idealized tensile specimen to yield the 
composite strength, ocr 

0 
cr 

0 
cr 

= 2 
a 

(a) Elastic 

fiber 

case 

-1 2 y, I 
- 1 ) (b) Rigid 

a a fiber 

case 

(9) 

where E =composite elastic modulus given by the law of mixtures, 
v PBisson's ratio of the matrix, and all other terms as de­

earlier. 

The solution Eq. 9 (b) shows that for stiffer and shorter 
fibers, the stiffness of the matrix and the length of the fibers 
become important in determining a and that crack propagation 
tends to be unstable soon after cracks are initiated 
( a maximum for b = 0). On the other hand Eq. 9 (a) is 

of fiber length. The possible model predicted solu­
tions for the composite tensile stress-strain behavior is pre­
sented in Fig. 4 (b). It should be noted that the stress trans­
fering capacity of cracked matrix is ignored in the model. At­
tempts to predict displacements or strains of the tensile speci­
men at a have also not been made. 

cr 

More recently, Jenq and Shah [15] have proposed a fracture 
mechanics based model to predict the crack propagation resistance 
of fiber reinforced concrete. Fracture resistance in fibrous 
composites is separated into four regimes which include; subcri­
tical crack growth in the matrix and the beginning of fiber 
bridging effect; post-critical crack growth in the matrix such 
that the net stress intensity factor due to the applied load and 
the fiber bridging closing stresses remain constant (steady-state 
crack growth); and the final stage where the resistance to crack 
separation is provided exclusively by the fibers. The model uses 
tw§ parameters that describe the matrix fracture properties 
(K I , modified critical stress intensity factor based on LEFM 
and the effective crack length, and CTOD the critical crack tip 
opening displacement), and a fiber pull-ofit stress versus slip (a 
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