type of cement	Specific gravity	blaine specific surface area (cm²/g)	chemical composition (%)					
			SiO₂	Al2O3	Fe2O3	CaO	SO₃	
CGC	2.96	4500	23	11	1	48	9	
OPC	3.15	3100	22	5	3	65	2	

TABLE 1--SPECIFIC GRAVITY, SPECIFIC SURFACE AREA AND CHEMICAL COMPOSITION OF CEMENT

TABLE 2--MIX PROPORTIONS OF GFRC

Type of GFRC	W/C (%)	S/C	Water- reducer	GF content (wt%)	setter	type of cement	flow * (mm)
new-GFRC	32.5	0.66	C×1%	5.0±0.5 3.5±0.5	C×0.3 ~0.5%	CGC	135
conv. -GFRC	35.0	0.66	C×1%	5.0 ± 0.5 3.5 ± 0.5	-	OPC HPC	135

*Flow cone (65mm diameter × 55mm height) was used.

Test	N	Specimen Geometries (mm)			Total Number	Tasting Mashing	Tasting Mathed		
	Items	Length	Width	Thickness	of Specimens	Testing machine	resting method	measurement items	
Durability Test	(Flexural) (strength)	250	50	10	60	2ton Autograph	Center-point loading (Cross head speed:2mm/min) (Span:200mm	Load-deflection curves (LOP, MOR)	
	(Tensile (strength)	380	40	10	60	2ton Autograph	Direct tension (Cross head speed:0.5mm/min)	Load elongation curves (BOP, UTS)	
Flexural Fatigue Test		250	50	10	36	5ton Servopulser	Center-point loading (Frequency:20Hz) (Span:300mm)	Load-deflection curves (at every 2×10'cycles) (at 2×10 ^e cycles)	
Length Cha Wet and D	ength Change Test in et and Dry Cycles		100	10	12	Comparator	_	Length change	
Adhesive Paint	• Test of	70 (50)	70 (50)	10	40	10ton Instron	JIS A 6910	Adhesive strength	
Flexural Strength Test of Plank		400	75	75	24	100ton Autograph	Third-point loading (Span:300mm)	Load-strain curves Load-deflection curves	
Compressiv Test	ve Strength	75	75	75	48	100ton Autograph	_	Compressive strength	
Freezing an Test	ıd Thawing	[•] 400	75	75	12	Comparator ASTM C 215	ASTM C666	Weight change Length change Relative dynamic elastic modulus	

TABLE 3--TEST PROGRAM

Fig. 1--Flexural fatigue testing method

D-D new-GFRC (5wt.%) --- conventional-GFRC (5wt.%) MOR LOP 2 7 10 4

0 2 4 7 10 Days immersed in 80°C water (days)

Fig. 2--Relation between days immersed in 80° C water and flexural strength of GFRC

400

300

200

100

0

Flexural strength (Kgf/cm²)

Fig. 3--Relation between days immersed in 80° C water and relative modulus of rupture of GFRC

Fig. 4--Flexural stress-deflection curves for conventional-GFRC immersed in 80° C water

Fig. 5--Flexural stress-deflection curves for new-GFRC in 80° C water

This is a preview. Click here to purchase the full publication.

Fig. 6--Relation between days immersed in 80° C water and tensile strength of GFRC

Days immersed in 80°C water(days)

Fig. 7--Relation between days immersed in 80° C water and strain at UTS of GFRC

Fig. 8--Tensile stress-strain curves for new-GFRC immersed in $80^{\circ}\ {\rm C}$ water

Fig. 9--Tensile stress-strain curves for conventional-GFRC immersed in 80° C water

This is a preview. Click here to purchase the full publication.

Fig. 10--Results of flexural fatigue test (flexural strength)

Fig. 11--Results of flexural fatigue test (modulus of elasticity)

39.2

29.4

19.6

9.8

GPa

Fig. 12--Flexural stress-deflection curves

Fig. 13--Relation between drying at 70° C / wetting at 20° C cycle and length change

Fig. 14--Relation between drying at 20° C $\cdot 30\% RH$ / wetting at 20° C $\cdot 90\% RH$ cycle and length change

This is a preview. Click here to purchase the full publication.