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Should Design Codes Consider 
Fracture Mechanics Size Effect? 

by Zdenek P. Bazant 

Synopsis. The paper reviews recent theoretical and experimental results on the size 

effect in brittle failures of reinforced concrete structures caused by the release of stored 

energy. After summarizing the size effect law and explaining the novel concept of a 

brittleness number, the results of recent Northwestern University tests of diagonal shear 

failure, punching shear failure, torsional failure and pullout failure are discussed. These 

results, which were obtained on geometrically similar specimens with a broad range of 

sizes are found to be in excellent agreement with the theoretical size effect law. The 

experimental evidence is much stronger than that which was previously obtained by 

analyzing a large amount of test results from the literature, which were not obtained on 

geometrically similar specimens and were limited to a narrow size range. It is also pointed 

out that the test data on diagonal shear disagree with the classical Weibull-type theory of 

size effect, thus strengthening the theoretical argument against using this theory for the 

size effect in concrete structures whose maximum load is much larger than the cracking 

initiation load. The test results indicate that the presently considered fracture mechanics 

size effect ought to be incorporated into the formulas for the contribution of concrete to 

the ultimate load capacity in brittle failures of concrete structures. It is shown that such 

formulas can be based on the brittleness number. For any given structure shape, this 

number can be determined from size effect tests. However, prediction of this number 

without such test data will require some further research. 

Keywords: Concrete structures; diagonal tension; failure; fracture 

mechanics; pullout tests; punching shear; shear properties; size effect; 
standards; structural design; torsion 
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1 Introduction 

It has long been known that ultimate loads of concrete structures exhibit size 

effect. The classical explanation has been Weibull's weakest-link theory which 

takes into account the random nature of concrete strength [1,2,3,4,5]. However, 

for reasons given elsewhere [6] and briefly explained in the Appendix, it now 

appears that the statistical theory docs not suffice to describe the essence 

of the size effect observed in brittle failures of reinforced concrete structures 

and plays only a secondary role. The main mechanism of the size effect in 

this type of failure is deterministic rather than statistical, and is due to the 

release of the stored energy of the structure into the front of the cracking zone 

or fracture. This phenomenon is properly described by fracture mechanics 

in its recently developed nonlinear formulation which takes into account the 

distributed nature of cracking at the fracture front. 

The purpose of this review paper is to summarize the existing evidence 

and also present some recent experimental results obtained at Northwestern 

U nivcrsi ty. 

2 Mathematical Description of Size Effect 

The size effect is defined by comparing the ultimate loads (maximum loads), 

Pu, of geometrically similar structures of different sizes. This is done in terms of 

the nominal stress UN at failmc. For two-dimensional similarity (e.g., panels), 

UN = c,.Pufbd, and for three-dimensional similarity (e.g., cylinders), uN = 

cnPu/ ([2. Here b = thickness of a two-dimensional structure; d = characteristic 

dimension (size), which may be defined as any dimension of the structure, e.g., 

the depth of a beam or its span, since only the relative values of UN matter; 

and c,. = chosen dimensionless coefficient introduced for convenience. One 

may either set c,. = 1 or use c,. to make UN coincide with some convenient 

stress formula. E.g., for a simply supported beam of span L and a rectangular 

cross section of depth II, with load P at midspan, one may set d = H and c,. = 

3L/2Il, in which case UN= 3PL/2bll 2 =maximum elastic bending stress (c,. 
is constant because L/ If is constant for geometrically similar structures); or 

one may set d =Land c,. = 3I}j2H 2 , with the same result for UN· 

When the UN- values for geometrically similar structures of different sizes 

are the same, one says that there is no size effect. The size effect represents a 

dependence of UN on the structure size (characteristic dimension), d. 

According to plastic limit analysis, as well as elastic analysis with allowable 

stress or any theory that uses a failure criterion in terms of stresses or strains, 

UN is independent of the structure size. This can be illustrated, e.g., by the 

elastic and plastic formulas for the strength of beams in bending, shear or 

torsion [7]. 

Another theory of failure, conceived by Griffith [8] and introduced to con­

crete by Kaplan [9], is fracture mechanics. It was Reinhardt [10,11] who pro-
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posed that fracture mechanics should be used to describe the size effect in 

concrete structures, particularly in diagonal shear failure. He also showed 

that the size effect of classical, linear elastic fracture mechanics agrees reason­

ably well with some test results, although later it was found that nonlinear 

fracture mechanics is necessary in general. 

In the linear form of fracture mechanics, in which all the fracture process 

is assumed to be happening at a point-the crack tip-the size effect is the 

strongest possible. In the plot of log aN vs. log d, it is described (regardless 

of the structure shape) by an inclined straight line of slope -1/2 (Fig. 1), 

provided that the cracks at the moment of failure of geometrically similar 

structures of different sizes arc also similar. The reason fm stipulating this 

condition (which has been shown from tests [12,13,14,15,16,17] to be usually 

satisfied) will be briefly explained after Eq.l. 

Concrete structures in reality exhibit a transitional behavior between the 

size effect of strength or yield criteria (i.e., no size effect), represented in Fig. 

1 by a horizontal line, and the size effect of linear elastic fracture mechanics, 

represented by the straight line asymptotic of slope -1 /2; see the curve in 

Fig. 1. This size effect is generally ignored by the current design codes, but 

recent tests [12,13,14,15,16], as well as Eq.1, show it to be very strong, and 

thus important. 

The aforementioned transitional size effect can be most simply explained 

by considering uniformly stressed rectangular panels of different sizes d, loaded 

by uniform distributed load aN, as shown in Fig. 2. Each panel is assumed 

to have a weak spot in the middle of the left side, from which the fracture 

originates. For a brittle heterogeneous material such as concrete, it is impor­

tant to take into account a relatively large zone of distributed cracking at the 

fracture front. The size of this zone is not proportional to the structure size 

but is approximately related to the maximum aggregate size. In the simplest 

approximation, it may be assumed that the width, h, of the cracking band at 

the fracture front is approximately constant, independent of the structure size 

(when similar structures made from the same concrete arc compared). Like­

wise, it may normally be assumed that, at maximum load, the length of the 

fracture, a, is proportional to dimension d of the structure, i.e., afd = con­

stant. (This is supported by many of the brittle failures of reinforced concrete 

structures, as well as by finite clement fracture studies.) 

Formation of a fracture with crack band of thickness h and length a may 

be imagined to release the strain energy of density a'Jv /2E from the cross­

hatched area in Fig. 2 (E = elastic modulus of concrete). When the fracture 

extends by the additional strain energy that is released into the fracture 

front comes from the densely cross-hatched strip of horizontal dimension 

Obviously, the larger the structure, the larger is the area of the cross-hatched 

strip, which is given by = + where k = slope in Fig. 2 

= empirical constant depending on the structure shape (the k-value can be 

deduced from test results m· finite element analysis; for the panel, k = 1r /2, 

but the value of k docs not matter for the present argument, only the fact it 
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is a size-independent constant). Now it is crucial to realize that in a larger 

structure the energy that is released into a certain small extension !:l.a of the 

fracture is larger if the O"N-value is the same because it comes from a zone of 

a larger volume. Since the energy dissipated by fracture per unit area of the 

fracture plane is approximately constant (being equal to the fractaure energy, 

G1, which is a material property), the value of O"N for a larger structure must 

be less so that the total energy release from a zone of a larger volume would 

remain the same. Hence the size effect. 

The strain energy released from the aforementioned densely cross-hatched 

strip is !:l.W = b(h!:l.a + 2ka!:l.a)O"'j../2E where b = panel thickness. Setting 

!:l. W = G 1bb..a = dissipated energy, one obtains O"'j..[h + 2k( a/ d) d) = 2EG 1. 

Solving for O"N, one can bl'ing the resulting expression to the form of the size 

effect law [7]: 

f3=d/do (1) 

in which the following notations have been made: B = (2EG 1/ hft 2 ) 112 , d0 = 

hd/2ka, and Jt, representing the direct tensile strength of concrete, is intro­

duced to make B nondimensional. The ratio f3 is called the brittleness number 

of the structure, fm· reasons explained later. Now it is important to note that 

parameters Band d0 arc size-independent, i.e., constant, because d/a is con­

stant if there is geometric similarity (see hypothesis 3 below), and h is also 

approximately size-independent, as already mentioned. 

It must be emphasized that Eq.l is only approximate. But its accuracy 

is sufficient for a rather broad size range-from experience, up to about 1:20, 

which is adequate for most practical purposes. For a still broader size range, 

a more complicated formula would nevertheless be required. 

For small enough structures (compared to d0 ), i.e., d << d0 , Eq.1 yields 

O"N = Eft = constant, which means that the size effect disappears (see the 

horizontal asymptote in Fig. 1). The plastic limit analysis or elastic allowable 

stress design is then valid. This has been the case for most laboratory testing 

so far. For d >> d0 , the fracture process zone size is negligible compared 

to the structure size, which is the case of linear clastic fracture mechanics. 

Eq.l reduces in this case to O"N = BJ:f3- 112 or log O"N = -! log d+ const., 

which gives in Fig. 1 a straight-line asymptote of slope -!· Thus it is clear 

that Eq.l gives a smooth transition between these two asymptotic cases. The 

intersection point of the asymptotes is obtained by setting Bft = Bftf3- 112 , 

which yields f3 = 1 or d = d0 (Fig. 1). 

Since from some viewpoints the length of the distributed cracking zone at 

the fracture front is more important than the width, it is interesting to note 

that a derivation of Eq.l similar to that given above, with the same result (7,18] 

can be made for a sharp line crack having a fracture process zone of constant 

length at the front. For more complicated structural geometries, the foregoing 

type of reasoning gets difficult. However, Eq.1 can be derived generally by 

dimensional analysis and similitude arguments [7,19]. This general derivation 
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rests on two basic hypotheses: (1) the propagation of a fracture or crack band 

requires an approximately constant energy supply per unit length and width of 

fracture, and (2) the potential energy released by f1·acture from the structure 

is a function of both (a) the length of the fracture and (b) the area of the 

cracking zone (fracture process zone) at the fracture front. If the potential 

energy release is a function of only the fracture length, the size effect of linear 

elastic fracture mechanics ensues, and if it is a function of only the cracking 

area, there is no deterministic size effect. 

The transitional size effect cmve in Fig. 1 is also obtained by numeri­

cal models of the microstructure, such as the random particle model. In this 

model, a system of aggregate particles is generated randomly and each large ag­

gregate particle is considered as a finite element interacting with its neighbors 

through a contact element representing the contact zone [20]. Furthermore, 

nonlocal finite element models in which localization of cracking is restricted 

to a zone of a certain minimum size, also exhibit the same transitional type of 

size effect, while ordinary finite element codes are incapable of representing it 

[21,22]. Finally, Eq.l has been derived as the deterministic limit of a statistical 

strength theory that represents a nonlocal generalization of Weibull theory [6]. 

Eq.l has been extensively verified by testing both fracture specimens [7,19, 

23] and reinforced concrete structures [12,13,14,15,16,24,25,26], as well as by 

computer simulations of cracking propagation [20,21,22]. In the case of test 

specimens, similarity of the fracture shape and length is enforced by providing 

geometrically similar notches in specimens of different sizes. In real concrete 

structures, from which notches are absent, Eq.l is applicable only under the 

following two additional hypotheses: (3) the failmc modes (i.e., fracture shapes 

and lengths) of geometrically similar structmes of different sizes are, at the 

moment of maximum load, also geometrically similar, and (4) the structure 

does not fail at crack initiation. From testing [12,13,14,16,24,25,26], as well 

as finite element (and other) computational models [20,21 ,22], it appears that 

these assumptions usually arc approximately satisfied over a wide range of 

structure types and sizes (but exceptions exist, e.g., in brasilian split cylinder 

tests, caused by a change in the failure mode as the size becomes very large). 

A good design practice of course requires the maximum load to be much higher 

than the cracking initiation load (as required by hypotheses 4), and this is to 

some extent also enforced by design codes. 

The characteristic of the failure process that gives rise to the size effect is 

the propagating nature of failure. In plastic limit analysis the failure is always 

non-propagating, simultaneous, with all the parts of the structme forming at 

maximum load a single-degree-of-freedom mechanism and moving simultane­

ously in proportion to one time-like parameter. The typical characteristic of 

such failures is that the load-deflection diagram, after reaching the maximum 

load, exhibits a horizontal plateau. It can be shown in general that when 

the horizontal plateau is lacking, i.e., when the load decreases after the peak 

with increasing deflection, the failure cannot be simultaneous but must be 

propagating. Propagating failures need to be generally described by fracture 
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mechanics, not plastic limit analysis, and they always exhibit size effect (of 

the energy release type). 

3 Brittleness Number 

Distinctions between brittle and ductile failures have long been emphasized in 

concrete textbooks, however the meaning of brittleness has been left hazy, un­

quantified. The notion of brittleness is closely connected with the size effect. 

13rittleness increases with size. It can be generally shown that in small struc­

tures. the load declines relatively slowly with deflection after the peak, while 

in a similar large stmcture the load-deflection curve declines steeply, and for a 

sufficiently large si7.e even exhibits the so-called snapback instability in which 

the load-deflection curve becomes vertical, after which the failure is dynamic. 

Recognizing this connection, various authors, including Gogotsi et al. (27], 

Homeny et al. [28] for ceramics in general, and Carpinteri (29] and Hillerborg 

[30] for concrete in particular, proposed brittleness to be quantified by some 

brittleness number depending on the structure size, d. Unfortunately, Gogotsi, 

Homeny, Hillerborg, and Carpinteri's brittleness numbers are not independent 

of the structure geometry (shape) and thus cannot be used as universal char­

acteristics of brittleness (e.g., a brittleness number equal to 2 could mean a 

very brittle behavior for one stmcture geometry and a very ductile behavior 

for another geometry). These numbers only allow comparing the brittleness 

of similar structures of different sizes. 

A universal measure of brittleness is offered by the size effect law [7], al­

though it is only approximate since the exact size effect law is not known. 

For (3 > > 1, linear fmcture mechanics applies, which represents a perfectly 

brittle behavior. For (3 << 1, plastic limit analysis applies, which represents 

the absence of brittleness. Therefore, the ratio (3 = d/do may be taken as 

a brittleness number [19,23]. According to Eq.l, the horizontal asymptote in 

Fig. 1 is O"N = BJ:, and the inclined asymptote is aN = BJ:fJ-112• They 

intersect at (3 = 1. Therefore, the value d = d0 (or (3 = 1) cones ponds in the 

size effect plot of log aN vs. log d to the point where the horizontal asymptote 

for the strength or yield criterion intersects the inclined asymptote for the 

linear elastic fracture mechanics (LEFM), (Fig. 1 ). For (3 < 1, the behavior is 

closer to plastic limit analysis, and for (3 > 1 it is closer to linear elastic frac­

ture mechanics. With a practically sufficient accuracy, the nature of structure 

response and the type of analysis may be characteri7.ed as follows (19]: 

(3 < 0.1 

0.1 (3 10 

(3 > 10 

plastic limit analysis 

nonlinear fracture mechanics (2) 

linear elastic fractme mechanics (LEFM) 

For (3 < 0.1, the horizontal asymptote deviates from Eq.1 (Fig. 1) by less than 

4.7%, which is small enough to permit the use of plastic limit analysis, and 
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for (3 > 10, the inclined asymptote deviates from Eq.l also by less than 4.7%, 

which is small enough to permit the usc of LEFM. If deviations under 2% are 

desired, then the nonlinear range must be expanded to 1/25 ::; (3::; 25. 

Let us now consider the determination of the brittleness number when size 

effect test data are absent. Two formulas have been derived for this purpose, 

based on matching the inclined asymptote of the size effect law, UN = B J: / VfJ, 
to a solution by lineat· clastic fracture mechanics. They read 

f'2 
(3 = B2g(ao) 

(3 = g( ao) !!._ 
g'(ao) CJ 

(3) 

(4) 

in which g(a0 ) is the nondimensionalized energy release rate corresponding to 

the initial relative crack length a 0 = a0d according to linear elastic fracture 

mechanics (see any fracture mechanics textbook, e.g., Brock (31] or Bazant and 

Cedolin, Ch.l2 (32]), g'( a 0 ) is its derivative, and CJ is the effective length of the 

fractm·e process zone, which is a material property (if defined for extrapolation 

to a specimen of infinite size). 

The first formula, Eq.3 (derived in (19,23]), is more accurate for small 

sizes, and the second formula, Eq.4 (derived in (33]), from a modified form 

of Eq.1, is more accurate for large sizes. With either formula, calculations 

of the brittleness number necessitate knowing the shape and length of the 

linear elastic crack at maximum load of a very large structure. This crack is 

precisely defined only by extrapolation to a similar structure of infinite size (for 

real size structures, there is a cracking band rather than a well defined crack). 

For typical brittle failures of concrete structures except diagonal shear (34], it 

has not yet been established what shape and length this crack should have. 

However, once this shape and length become known, g(a0 ) and its del'ivative 

can be easily calculated with a linearly elastic finite element program, and 

could also be tabulated fm typical structures. For the calculation of B, the 

existing design formulas based on plastic limit analysis can probably be used. 

Alternatively, one might also skip the determination of g(a0 ) and develop 

on the basis of test data alone simple empirical formulas (34] that directly give, 

for various typical structure shapes, the value of the transitional size d0 (for 

example in relation to the cross section dimension and the maximum aggregate 

size da)· Then the brittleness number immediately results as (3 = d/d 0 • Such 

a value of d0 would not be exact, but may be accurate enough for design 

purposes (after all, due to the log-scale in Fig. 1, what matters is the order of 

magnitude of d0 ; errors by factors up to 2 may be tolerable). 

In view of the universality of the size effect law in Fig. 1 and the associated 

brittleness number, it appears that a simple adjustment can introduce the size 

effect into the existing code formulas based on limit analysis. It might suffice 

to take the existing code formula for the nominal stress due to conct·ete at 
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ultimate load, Vu, and replace it by the expression: 

Vu(1 + fJtl/2 (5) 

Note, however, that for some types of failure there may exist some limit v:'in, 

since at very large sizes there can be a transition to some nonbrittle failure 

mechanism (this in fact is the case for the Brazilian split-cylinder test). An 

empirical expression for d0 needed for calculating {3 in Eq.5 has been proposed 

in [24,26] but a rational method to calculate do [34] for most types of brittle 

failure still awaits development. 

4 Previous Tests of Brittle Structural Fail­

ures 

After the size effect law has been formulated, much effort has been devoted 

to comparing and validating it on the basis of the test data in the literature. 

The efforts were especially focused on the diagonal shear failure of reinforced 

concrete beams without and with stirrups [12,24,26]. The latter study in­

cluded essentially all the experimental data that could be extracted from the 

literature, consisting of 461 beam tests. After approximately eliminating the 

effects of shear span, reinforcement ratio and other factors according to various 

known approximate formulas (as explained in these papers), the existence of 

a size effect has been clearly demonstrated. It was also shown that incorpo­

ration of the size effect law (Eq.1) into the existing ACI or CED-FIP design 

formulas for the contribution of concrete to the ultimate strength of beams in 

diagonal shear brings about a distinct improvement, reducing the coefficient 

of variation of the deviations of the test results from the design formula. 

Unfortunately, however, the results of these studies have not allowed any 

strong conclusions. The reason has been that the size effect data extracted 

from the previous tests showed enormous scatter, which was probably due 

mainly to the errors of the formulas used to filter out the effect of various other 

factors. The tests have been done at various laboratories, on various concretes, 

and on beams of various geometries. Most test series did not include various 

sizes. Those few that did ([35,36,37,38,39,40,41]), did not include a sufficiently 

broad range of sizes and, most seriously, did not use geometrically similar 

specimens and the same aggregate sizes. The same is true of the latest and 

largest study of the size effect in diagonal shear presented by Iguro, Shioya, 

Nojiri and Akiyama [42]. 

The lack of geometric similarity in the previous test series has been the 

most serious impediment against their exploitation for the present purposes. 

To extract information on the size effect, adjustments for all the other influ­

encing factors had to be made first. But since the influences of those other 

factors are known only approximately, a considerable error is inevitably intro­

duced by such adjustments. This causes enormous scatter, which obscures the 

underlying trend of the size effect [12,15,24,26]. 
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Aside from unprestressed beams without stirrups, the previous studies of 

test data from the literature dealt also with prestressed beams without stirrups 

and with unprcstrcsscd beams with stirrups. In the latter case, the portion of 

the carrying capacity due to stirrups is of course free of size effect as the stirrups 

fail in a ductile manner. However, despite considerable scatter, the analysis 

of the data confirmed that, in contrast to the current design approach, the 

carrying capacity due to stirmps (which exhibits no size effect) is not simply 

additive to that due to concrete (which docs exhibit a size effect). Rather, the 

presence of stirrups appears to have a strengthening influence on the portion of 

the carrying capacity due to concrete, which is of course not really surprising. 

Similar problems have been encountered in an attempt to evaluate the size 

effect from the existing data on punching shear failures and torsional failures 

although, for the latter, the test results of Hsu [43], Humphreys [44] and 

McMullen and Daniel [45] provided at least a clear indication of the existence 

of a significant size effect. 

To sum up, despite a clear revelation of the existence of size effect, the 

enormous scatter and narrow size range of the previous test data from the 

literature [24,26] has made it impossible to verify with such data which size 

effect theory is the correct one. For example, the present size effect law fits 

most previous data from the literature no better than a formula based on 

Wcibull-typc statistical theory. This state of affairs, for example, would permit 

concluding on the basis of the test data of Iguro ct a!. [42] that the Weibull­

type theory should be acceptable for diagonal shear failmcs of beams, even 

though its usc is in fact questionable from the theoretical viewpoint as already 

mentioned. 

5 Evidence from New Tests of Geometrically 

Similar Structures 

In view of the aforementioned limitations of the previous experimental evi­

dence, a systematic program of new tests of brittle failures of reinforced con­

crete structure, focused on the size effect and strictly adhering to geometric 

similarity, has been canied out at Northwestern University. To keep the costs 

down, all the tests were done on reduced-size specimens with reduced-size 

aggregate (maximum sizes 3/8 or 1/4 in.). The tests included the diagonal 

shear failure of beams without stirrups [14] the punching shear failme of cir­

cular slabs reinforced at bottom surface [12), the torsional failures of plain 

and longitudinally reinforced concrete beams [25], and the pullout failure of 

reinforcing bars [15]. The results of these tests, whose details are given in the 

aforementioned articles, are shown as the data points in Figs. 3-6. The data 

for punching shear (Fig. 4) have the size range 1:4, and so have the data for 

torsion (Fig. 5a,b) and the data for pullout (Fig. 6). 

The tests of diagonal shear consisted of two series. In the first series (Fig. 

3a), in which the size range was 1:4 and in which the longitudinal bars were 
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straight, it was found that the diagonal shear failure was accompanied by 

pullout failure of bars, marked especially for the smallest size. Therefore a 

second series (Fig. 3b) was conducted on beams in which the bars had right 

angle hooks at the ends, which prevented the pullout. The second series had 

the size range of 1:16. The beam specimens were similar in two dimensions, 

i.e., they had the same thickness for all the sizes. 

From Figs. 3-6 it is clear that there is a strong size effect. It is also note­

worthy that in the logarithmic scales the size effect curve docs not tend to 

level off at large sizes, which is predicted by fracture mechanics. The optimal 

fits according to Eq.1 arc shown as the solid curves, and it is seen that the 

agreement is quite good, especially in view of the inevitable statistical ran­

dom scatter of concrete strength in brittle failures. While the aforementioned 

studies of previous test data from the literature only confirmed the existence 

of size effect but could not decide which formula for the size effect was the 

correct one, the comparisons in Figs. 3-6 can be said to support Eq.l. This is 

especially clear for the second series of the diagonal shear tests (Fig. 3b ), by 

virtue of its broad size range. 

The second series appears to represent the first test results that show that 

classical Weibull-typc statistical theory docs not apply to concrete structures. 

According to this theory, the strongest size effect in two dimensions corre­

sponds to a straight line of slope -1/6, whose optimal fit to the present data 

is shown as the dashed line in Fig. 3b. One can sec that this line clearly 

disagrees with the trend of the data and gives too weak a size effect for the 

large sizes. (This is true provided one takes the value of Weibull modulus as 

m = 12, in agreement with the results of uniaxial tensile tests, and assumes 

the Weibull threshold strength to be a0 = Q; if this threshold were larger than 

0, the size effect would be even milder than that shown by the dashed line in 

Fig. 3b, exhibiting an approach to a horizontal asymptote, as shown by the 

dotted curve.) 

The essential parameter that determines the intensity of the size effect is 

the transitional size d0 • This parameter represents a combination of a material 

property with the effect of structure shape. The tests in Figs. 3-6 show that 

its values vary greatly from one structure type to another. From the present 

limited results, it is not yet possible to give a good empirical formula for eval­

uating do. But parameter d0 can also be predicted theoretically from Eq.3 or 

4. In that regard, further research is desirable in order to determine the shape 

and length of the equivalent linearly clastic crack at maximum load, which 

is needed to calculate g(a 0 ) for Eq.3 or 4, or to develop empirical formulas 

for d0 • To obtain complete experimental verification and minimize reliance on 

theoretical extrapolations, geometrically similar tests of sufficient size range 

may have to be made with full-size aggregate, including real-size beams and 

slabs. 
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