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According to his proposal the size effect can be described in following 

exponential form: 
F.,= k da (4) 

In this equation the size effect is expresses by the exponent a. In case of no 

size effect the exponent a = 1.0 and the failure load is linearly proportional 

to the size. Such a relation is assumed in the plasticity theory. Note, that in 

the plane stress state the size is proportional to the linear dimension d, while 

in the axisymmetrical stress state the size is proportional to the area rP. 

Using the least square method, the exponents a were derived from the 

sets of three sizes for each case of shape, constraint and crack model. The 

exponents are plotted in Fig.14 for the variable span of support. The effect 

of lateral constraint diminishes with the growing span of support ratio afd. 

The above equation can be refined to include the effect of concrete quality 

according to the ref.[22] and the effect of the span of support is expressed in 

the exponential form: 

(5) 

where c, a, {3 are parameters which should be determined. The formula is 

composed of three multipliers. The term Vfc coveres the concrete quality (/c 

is cube strength), the term da includes the size effect and the term (a/d)P 
describes the effect of the span of support. The parameter c covers other 

effects. 

Small span of supports has a meaning only in physical laboratory tests. 

In practical situations the load is typically suspended, and supports are not 

present at all. Therefore, for design purposes, only large spans should be 

considered. From these reasons the optimization of the parameters in Eq.(5) 

is done in two steps. First, the exponents of the size effect are found by 

least square fit for all spans of one type of constraint as a = 0.68 and 0.8 

(without and with lateral constraints). Then, the remaining two constants are 

found as c = 1.61 and 1.96, {3 = -0.28 and -0.40 (for cases without and with 

lateral constraint, respectively). The effect of the span of supports vanishes at 

approximately afd = 5.0, where the force F., is the same for constrained and 

unconstrained specimens. In such a case the expression c (afd)P is equal to 

0.16 for both types of constraint. This corresponds to the practical situation 

with the large span of support. The exponent for the size effect can be 

taken as an average from unconstrained and constrained cases as a= 0.74. 

Equation (5) above can be then simplified for large spans as 

(6) 

Failure load F., is in kN. The embedment length dis in mm. The specimen 

thickness is considered as b = 100 mm. The formula is compared with the 

simulated tests in Fig.15. An interesting observation is that the exponent 
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a= 0.74 in the formula above is halfway between the values obtained with 

linear fracture mechanics (a= 0.5) and plasticity theory (a= 1.0). 

The formula designed here was derived on the basis of the computer sim­

ulation verified by only one experiment. Further experimental verification is 

needed before the practical implementation. 

A final note is made with respect to the role of the tensile strength in 

the concrete fracture. The above formula assumes a direct relation of the 

pull-out force to the tensile strength, which is assumed to be proportional to 

.,(!;,. However, recent advances in fracture mechanics of concrete indicate [16] 

that the brittle-type of failure is related to the fracture toughness described 

by the characteristic length >. in Eq.(l ). It has been recognized, that >. is a 

material property with no direct relation to compressive strength of concrete. 

Thus a more rational formula could be proposed in the form 

(7) 

It would be possible to perform a numerical study similar to the one described 

in this paper with the aim to derive a formula of the type as suggested in 

Equation (7). Available computer codes, such as the system SBETA, are 

suitable tools for these studies. 

CONCLUSIONS 

The response of the specimens subjected to the anchor loading was simu­

lated by the finite clement analysis made with the SBETA computer program, 

based on the smeared crack approach and the crack band theory of non-linear 

fracture. In some cases a comparison with microplane analysis was made. The 

simulations provided a detailed insight in the mechanics of the failure process 

of the anchors. Furthermore, it provided data for the evaluation of the size 

effect. 

The size effect of the embedment depth d on the pull-out force Fu was ex­

pressed in the exponential form of Eq.(6). The value of the exponent a= 0.74 

is a value halfway between the values obtained with linear fracture mechanics 

(a= 0.5) and plasticity (a= 1.0). This means, that the non-linear fracture 

mechanics analysis based on the concept of toughness gives an intermedi­

ate solution between the solution based on linear fracture mechanics and the 
solution based on plasticity theory. 

Lateral constraint has a very large effect on the response of the specimens. 

The increase-factor of the pull-out force due to lateral constraint ranged from 

1.5 to 3.6. 

The effect of span of supports is stronger for constrained specimens and 

it grows with size d. The pull-out force decreases with the larger span a. For 

small specimens the effect of span of supports is insignificant. 

All analyses were performed with two SBETA material models, namely, 
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fixed and rotated cracks. The fixed crack model gave the greater pull-out 

forces in cases of unconstrained specimens. In the case of laterally constrained 

specimens there was no significant difference in responses for small sizes and 

for large sizes the rotated crack model gave greater force. From the view of 

the involved stress states, a conclusion can be suggested, that the rotated 

crack model gives a softer response in cases with predominantly tensile stress 
fields. In cases when cracking is taking place under interaction with high 
compression, the rotated cracks can give stronger response. From a limited 
comparison with experiments it can be concluded that the rotated and fixed 

analyses give bounds for a real behavior. 
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TABLE 1- SUMMARY OF PEAK LOADS 

Peak loads [kN] 

lateral constraint 0 00 

d[mm]= 50 150 450 50 150 450 

a= material model 

d/2 fixed cracks 31.9 74.3 129.4 49.8 144.6 366.5 1 

rotated cracks 26.0 54.3 109.0 49.5 142.7 382.7 

fixed cracks 23.1 47.2 110.2 47.6 130.7 254.9 
d rotated cracks 18.8 36.5 81.9 47.1 129.3 276.1 

microplane 17.5 42.7 93.4 - - -

fixed cracks 22.2 49.5 94.3 34.6 84.0 145.5 
2d rotated cracks 16.5 31.1 82.9 34.3 96.8 179.6 

Wittmann's test - 38.4 - - - -

https://www.civilenghub.com/ACI/162844962/ACI-SP-134?src=spdf


l! 
lc a ,fclc a ""i 

a+d 

6d 

'sym. 

Geometry: 

d = 50, 150, 450 mm 

a= d/2, d, 2d 

2c = 3d/10, t = d/10 
Thickness = 100 mrtJ. 

Lateral constraint: /( = 0, oo 

Material properties: 

ft = 3 MPa, fc = 40 MPa 

E = 30 GPa, v = 0.2 

G1 = 100 N/m 

Fig. 1-Geometry and material 

properties of the pullout specimens 

Fig. 2-Finite element model 
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Fig. 3-Effective stress-strain law 
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Fig. 4-Biaxial failure function 
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Fig. 5-Compressive strength 

reduction of cracked concrete 
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Fig. 6-Shear stiffness of cracked concrete 
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