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A clear understanding of the effects of torsion on concrete 

members is essential to the safe, economical design of reinforced 

and prestressed concrete members. This report begins with a brief 

and systematic summary of the 180-year history of torsion of 

structural concrete members, new and updated theories and their 

applications, and a historical overview outlining the development 

of research on torsion of structural concrete members. Historical 

theories and truss models include classical theories of Navier, 

Saint-Venant, and Bredt; the three-dimensional (3-D) space truss of 

Rausch; the equilibrium (plasticity) truss model of Nielson as well 

as Lampert and Thürlimann; the compression field theory (CFT) 

by Collins and Mitchell; and the softened truss model (STM) by 

Hsu and Mo.

This report emphasizes that it is essential to the analysis of torsion 

in reinforced concrete that members should: 1) satisfy the equi-

librium condition (Mohr’s stress circle); 2) obey the compatibility 

condition (Mohr’s strain circle); and 3) establish the constitutive 

relationships of materials such as the “softened” stress-strain rela-

tionship of concrete and “smeared” stress-strain relationship of 

steel bars.

The behavior of members subjected to torsion combined with 

bending moment, axial load, and shear is discussed. This report 

deals with design issues, including compatibility torsion, span-

drel beams, torsional limit design, open sections, and size effects. 

The final two chapters are devoted to the detailing requirements 

of transverse and longitudinal reinforcement in torsional members 

with detailed, step-by-step design examples for two beams under 

torsion using ACI (ACI 318-11), European (EC2-04), and Cana-

dian Standards Association (CSA-A23.3-04) standards. Two design 

examples are given to illustrate the steps involved in torsion design. 

Design Example 1 is a rectangular reinforced concrete beam under 

pure torsion, and Design Example 2 is a prestressed concrete 

girder under combined torsion, shear, and flexure.

Keywords: combined action (loading); compatibility torsion; compression 

field theory; equilibrium torsion; interaction diagrams; prestressed concrete; 

reinforced concrete; shear flow zone; skew bending; softened truss model; 

spandrel beams; struts; torsion detailing; torsion redistribution; warping.
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CHAPTER 1—INTRODUCTION AND SCOPE

1.1—Introduction

Accounting for the effects of torsion is essential to the 

safe design of structural concrete members, requiring a 

full knowledge of the effects of torsion and a sound under-

standing of the analytical models that can easily be used 

for design. For over three decades, considerable research 

has been conducted on the behavior of reinforced concrete 

members under pure torsion and torsion combined with other 

loadings. Likewise, analytical models have been developed 

based on the truss model concept. Several of these models 

were developed to predict the full load history of a member, 

whereas others are simplified and used only to calculate 

torsional strength. Many models developed since the 1980s 

account for softening of diagonally cracked concrete.

This report reviews and summarizes the evolution of torsion 

design provisions in ACI 318, followed with a summary of 

the present state of knowledge on torsion for design and 

analysis of structural concrete beam-type members. Despite 

a vast amount of research in torsion, provisions of torsion 

design did not appear in ACI 318 until 1971 (ACI 318-71), 

although ACI 318-63 included a simple clause regarding 

detailing for torsion. Code provisions in 1971 were based 

on Portland Cement Association (PCA) tests (Hsu 1968b).

These provisions were applicable only to rectangular 

nonprestressed concrete members. In 1995, ACI 318-95 

adopted an approach based on a thin-tube, space truss model 

previously used in the Canadian Standards Association 

(CSA-A23.3-77) code and the Comité Euro-International 

du Béton (CEB)-FIP code (1978). This model permitted 

treatment of sections with arbitrary shape and prestressed 

concrete (Ghoneim and MacGregor 1993; MacGregor and 

Ghoneim 1995). The ACI 318-02 code extended the appli-

cation of the (ACI 318) 1995 torsion provisions to include 

prestressed hollow sections. ACI 318 allows the use of alter-

native design methods for torsional members with a cross 

section aspect ratio of 3 or greater, like the procedures of 

pre-1995 editions of ACI 318 or the Prestressed Concrete 

Institute (PCI) method (Zia and Hsu 1978).

This report reviews and summarizes the present state 

of knowledge on torsion and reviews their use as a frame-

work for design and analysis of structural concrete beam-

type members. Chapter 3 presents a historical background 

outlining the development of research on torsion of struc-

tural concrete members. The general behavior of reinforced 

and prestressed concrete members under pure torsion is 

discussed in Chapter 4. In Chapter 5, the compression field 

theory (CFT) and softened truss model (STM) are presented in 

detail. Chapter 5 also includes a description of two graphical 

methods (Rahal 2000a,b; Leu and Lee 2000). The behavior of 

members subjected to torsion combined with shear, flexure, 
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and axial load is discussed in Chapter 6. Chapter 7 introduces 

additional design issues related to torsion, such as precast 

spandrel beams, torsion limit design, size effect, open sections, 

and torsional moment distribution. Detailing of torsional 

members is described in Chapter 8. Chapter 9 covers detailed 

design examples of several beams subjected to torsion using 

ACI 318, EC2-04, and CSA-A23.3-04 design equations, and 

additional graphical design methods reported by researchers.

1.2—Scope

Theories presented in this report were developed and verified 

for building members of typical size. For application to large-

scale members, size effects should be considered. They could 

present a serious safety issue when using the shear strength 

equations provided in the design standard, which cannot take 

into account the shear strength reduction in large-scale members 

caused by loss of aggregate interlock behavior. Experimental 

information on large-scale torsional members is lacking.

CHAPTER 2—NOTATION AND DEFINITIONS

The material presented is a summary of research carried 

out worldwide and spanning more than four decades, 

making unification of the symbols and notations used by the 

various researchers and design codes a challenge. In some 

cases, mostly for graphs and figures, the notation is kept as 

originally published.

2.1—Notation

a = moment arm for bending, mm (in.)

ac = geometric property index

ao = depth of equivalent rectangular stress block in 

concrete strut of torsional member, mm (in.)

A = area of yield surface, mm2 (in.2)

Acp = area enclosed by outside perimeter of concrete 

cross section, mm2 (in.2)

Aℓ = total area of longitudinal reinforcement to resist 

torsion, mm2 (in.2)

Ao = gross area enclosed by shear flow path, mm2 (in.2) 

(noted as Atb in Eq. (7.2.6))

Aoh = area enclosed by centerline of outermost closed 

transverse torsional reinforcement, mm2 (in.2)

Aps = area of prestressing reinforcement in flexural 

tension zone, mm2 (in.2)

As = area of nonprestressed longitudinal tension rein-

forcement, mm2 (in.2)

As′ = area of longitudinal compression reinforcement, 

mm2 (in.2)

At = area of one leg of a closed stirrup resisting torsion 

within spacing s, mm2 (in.2) (noted as Atb in Eq. 

(7.2.6))

b = width of compression face of member, mm (in.)

bc = width of stirrups, mm (in.)

B = integral of Tw

C = cross-sectional constant to define torsional proper-

ties of a beam

dv = distance between top and bottom longitudinal rein-

forcement, mm (in.)

D = cross-sectional depth used in fracture mechanics 

calculations, mm (in.)

D0 = size effect constant for computing σN for plain 

concrete section

D1 = normalized constant to represent characteristic 

structural dimensions used in fracture mechanics 

calculations

Db = size effect constant for computing σN for reinforced 

concrete section

Dc = total energy dissipated on discontinuous concrete 

yield surface

Ds = total energy dissipated by reinforcement

e = moment arm for torsion, mm (in.)

Ec = modulus of elasticity of concrete, MPa (psi)

Eps = modulus of elasticity of prestressed reinforcement 

in flexural tension zone, MPa (psi)

Eps′ = tangential modulus of Ramberg-Osgood curve at 

zero load MPa (psi)

Es = modulus of elasticity of reinforcement and struc-

tural steel, MPa (psi)

EJw = rigidity of beam under warping torque, N·m2 (lb-in.2)

fc′ = characteristic concrete cylinder compressive 

strength, MPa (psi)

fc
* = concrete effective (plastic) compressive stress, 

MPa (psi)

fck = characteristic compressive strength of concrete, 

MPa (psi); fck = fcm – 8 MPa (fck = fcm –1200 psi)

fcm = mean compressive strength of concrete, MPa (psi)

fd = diagonal concrete stress, MPa (psi)

fds = diagonal concrete stress corresponding to strain εds, 

MPa (psi)

fℓ = reinforcement stress in ℓ direction, MPa (psi)

fℓp = prestressing reinforcement stress in the ℓ direction, 

MPa (psi)

fℓy = specified yield strength of longitudinal reinforce-

ment, MPa (psi)

fp = stress in prestressing reinforcement; fp becomes fℓp 

or ftp when applied to longitudinal and transverse 

reinforcement, respectively, MPa (psi)

fp0.1 = characteristic yield strength of prestressing rein-

forcing strands, MPa (psi); fp0.1 = 0.9fu

fpc = compressive stress in concrete due to prestress, 

MPa (psi)

fpk = characteristic tensile strength of prestressing rein-

forcing strands, MPa (psi); fpk = fpu

fpo = effective prestress after losses in prestressing rein-

forcement, MPa (psi)

fpu = specified tensile strength of prestressing reinforce-

ment, MPa (psi)

fp,ud = design ultimate strength of prestressing reinforcing 

strands, MPa (psi); fp,ud = fpk/γs (γs = 1.15)

fr = modulus of rupture of concrete, MPa (psi)

ft = reinforcement stress in t direction, MPa (psi)

ft′ = uniaxial tensile strength of concrete, MPa (psi)

ft
* = concrete effective (plastic) tensile stress, MPa (psi)

ftp = prestressing reinforcement stress in t direction, 

MPa (psi)
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fty = specified yield strength of transverse reinforcement, 

MPa (psi)

fy = specified yield strength of reinforcement, MPa (psi)

fyd = design yield strength reinforcing steel, MPa (psi); 

fyd = fy/γs (γs = 1.15)

fyℓ = yield strength of the torsional longitudinal rein-

forcement, MPa (psi)

fyv = torsional hoop yield strength reinforcement, MPa 

(psi)

G = shear modulus, MPa (psi)

h = overall thickness or height of a member, mm (in.)

Ho = horizontal force in radial direction, N (lb) (Chapter 7)

Ip = polar moment of inertia, mm4 (in.4)

k1 = ratio of average stress to peak stress

K = value from Mohr-Coulomb yield criterion

Kf = flexural stiffness of floor beams, N·m2 (lb-in.2)

Kts = torsional stiffness of spandrel beam, N·m/rad 

(in.-lb/rad)

ℓ = span length of beam, mm (in.)

ℓf = length of flexural beam, mm (in.)

ℓq = width of shear flow q along top wall (Fig. 4.2(a) 

and (b)), mm (in.)

m = ratio of effective (plastic) compressive stress to 

effective (plastic) tensile stress of concrete

M = applied flexural moment at section, N·m (in.-lb)

Mo = pure flexural strength of section, N·m (in.-lb)

n = integer value

nR = number of redundants

nV = coefficient describing an under-reinforced, partially 

under-reinforced, or completely over-reinforced section

N = applied axial load at section, N (lb)

No = pure axial strength of section, N (lb)

ph = perimeter of centerline of outermost closed trans-

verse torsional reinforcement, mm (in.)

po = perimeter of outer concrete cross section, mm (in.) 

(sometimes noted as pcp)

P = applied concentrated load, N (lb)

q = shear flow, N/m (lb/in.)

r = ratio of top-to-bottom yield forces of the longitu-

dinal reinforcement

r = size effect constant for computing σN

R = shape parameter used in Ramberg-Osgood

s = center-to-center spacing of longitudinal and trans-

verse reinforcements, mm (in.)

sl = center-to-center spacing of longitudinal reinforce-

ment, mm (in.)

st = center-to-center spacing of transverse reinforce-

ment, mm (in.)

t = wall thickness of hollow section, mm (in.)

td = thickness of shear flow zone, mm (in.)

T = applied torsional moment at section, N·m (in.-lb)

Tc = nominal torsional strength provided by concrete, 

N·m (in.-lb)

Tcr = torsional cracking resistance of cross section, N·m 

(in.-lb)

Tf = applied torsional moment, N·m (in.-lb) (Chapter 9)

Tmax = maximum torsional moment, N·m (in.-lb) (Chapter 7)

Tn = nominal torsional moment strength, N·m (in.-lb)

To = pure torsional strength of section, N·m (in.-lb)

Ts = nominal torsional strength provided by reinforce-

ment, N·m (in.-lb)

Tu = factored torsional moment at section, N·m (in.-lb)

Tw = warping torsional moment, N·m (in.-lb)

Txu = factored balanced torsional strength, N·m (in.-lb)

Txub = balanced torsional strength, N·m (in.-lb)

T xub  = nondimensional balanced torsional strength, N·m 

(in.-lb)

v = shearing stress due to shear, MPa (psi)

v* = plastic flow rate (Chapter 7)

vu = ultimate shear stress, MPa (psi)

V = applied shear force at section, N (lb)

Vc = nominal shear strength provided by concrete, N (lb)

Vo = pure shear strength of section, N (lb)

Vu = factored shear force at section, N (lb)

w = ultimate distributed load on helical stair, N/m (lb/ft) 

(Chapter 7)

W = external work, N/m (lb/ft)

x = shorter overall dimension of rectangular part of 

cross section, mm (in.)

x1 = distance section centroid and an infinitesimally 

small area of yield surface, mm (in.)

y = longer overall dimension of rectangular part of 

cross section, mm (in.)

z = distance along axis of beam, mm (in.)

α, β = Saint-Venant’s coefficients for homogeneous 

torsional section

α*, β* = rotational angles in beam subjected to torsion 

(Chapter 7)

α1 = stress block factor given as ratio of fd to fc′ (Chapter 5)

β = factor relating effect of longitudinal strain on shear 

strength of concrete (American Association of State 

Highway and Transportation Officials (AASHTO) 

LRFD (general message)

β1 = factor relating depth of equivalent rectangular 

compressive stress block to neutral axis depth; also, 

block factor given as ratio of ao to td (Fig. 4.5)

γ1 = angle along helical stair (in plan) at which maximum 

torsional moment is assumed to occur

γ2 = angle along helical stair (in plan) at which vertical 

moment is assumed to be zero

γℓt = shear strain

εd = strain in d direction

εdec = strain in prestressing reinforcement at decompres-

sion of concrete

εds = maximum strain at concrete strut surface (Fig. 4.3)

εh = strain in hoop direction εℓ

εℓy = yield strain in ℓ direction

εo = strain at peak compressive stress fc′ in concrete

εp = peak strain in concrete

εr = strain in r direction

εs = strain in nonprestressed reinforcement; εs becomes 

εℓ or εt when applied to longitudinal or transverse 

reinforcement, respectively

εt = strain in t direction

εty = yield strain in t direction
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εuk = characteristic total elongation of reinforcing steel at 

ultimate load

εx = longitudinal strain at midheight of concrete section

ζ = softening coefficient of concrete strut

ηℓ = normalized reinforcement ratio of longitudinal 

reinforcement

ηlb = balanced normalized reinforcement ratio of longi-

tudinal reinforcement

ηt = normalized reinforcement ratio of transverse steel 

reinforcement

ηtb = balanced normalized reinforcement ratio of trans-

verse steel reinforcement

θ = angle between axis of strut, compression diagonal, 

or compression field and tension chord of the 

member; also, the angle between ℓ-t direction/axis 

and d-r direction/axis, radians

ξ = coefficient equal to 1 for rectangular sections and 

to π/4 for circular cross sections; ξ can be taken 

as unity for all shapes of cross sections with only 

negligible loss of accuracy for Ao and po

ρℓ = reinforcement ratio in ℓ direction

ρℓp = prestressing reinforcement ratio in ℓ direction

ρt = reinforcement ratio in t direction

ρtp = prestressing reinforcement ratio in t direction

σ = compressive stress acting in combination with 

torsional moment, psi (MPa)

σ0 = nominal torsional strength according to the current 

code specifications based on plastic limit analysis, 

MPa (psi)

σd = principal stress in d direction for concrete struts, 

MPa (psi)

σℓ = normal stress in longitudinal direction for reinforced 

concrete, MPa (psi)

σmax = maximum principal tensile stress, MPa (psi)

σN = nominal strength of structure, MPa (psi)

σr = principal stress in r direction for the concrete struts, 

MPa (psi)

σt = normal stress in the transverse direction for rein-

forced concrete, MPa (psi)

σ∞ = strength of plain beams according to elastic analysis 

with maximum stress limited by material strength, 

MPa (psi)

τ = shearing stress due to torsion and shear, MPa (psi)

τmax = maximum shear stress, MPa (psi)

τℓt = applied shear stress in ℓ-t coordinate for reinforced 

concrete, MPa (psi)

ν = uniform plastic effectiveness factor (Chapter 7)

νc = plastic effectiveness factor for compression 

(Chapter 7)

νt = plastic effectiveness factor for tension (Chapter 7)

ϕ = friction angle

φ = strength reduction factor

φc = strength reduction factor for concrete (0.65 for 

cast-in-place, 0.70 for precast concrete)

φp = strength reduction factor for prestressing tendons 

(0.90)

φs = strength reduction factor for nonprestressed rein-

forcing bars (0.85)

Φ = angle of twist in torsional beam, radians/m 

(radians/in.)

Φ′ = second derivative of rotation with respect to beam’s 

axis z

Φ′′ = third derivative of rotation with respect to beam’s 

axis z

Ψ = bending curvature of concrete strut

ωℓ = reinforcement index in ℓ direction

ωs = functional indicator of an index of reinforcement

ωsℓ = reinforcement ratio index

ωt = reinforcement index in t direction

2.2—Definitions

ACI provides a comprehensive list of definitions through 

an online resource, “ACI Concrete Terminology,” http://

terminology.concrete.org.

CHAPTER 3—HISTORICAL OVERVIEW OF 

TORSION THEORIES AND THEORETICAL MODELS

3.1—Navier’s theory

A theory for torsion of elastic homogeneous members 

was first developed by C. L. Navier (1826) for circular cross 

sections. His theory, which was based on equilibrium condi-

tions, compatibility conditions, and a linear stress-strain 

relationship like Hooke’s Law, has guided the development 

of various theories about the behavior of reinforced concrete 

members subjected to torsion after cracking.

3.2—Thin-tube theory

Navier’s torsion theory for members of circular sections 

was followed by Saint-Venant’s (1856) solution for rectan-

gular sections. Saint-Venant’s torsional constants considered 

warping of rectangular cross sections. According to Saint-

Venant’s circulatory shear flow theory, the most efficient 

cross section to resist torsion is a thin tube. Bredt (1896) was 

able to derive simple equations for thin tubes. His thin-tube 

theory states that the shear stress multiplied by wall thick-

ness has a constant value around the perimeter and that this 

shear flow is found by dividing the torsion by twice the area 

enclosed by the shear flow path. Bredt’s theory has served as 

the basis for modern theories of cracked reinforced concrete 

members subjected to Saint-Venant torsion.

3.2.1 Two- and three-dimensional plane truss models—

The first theoretical models for shear in cracked reinforced 

concrete members date back to the turn of the century when 

Ritter (1899) and Mörsch (1902) formulated the two-dimen-

sional (2-D) plane truss model concept, where reinforced 

concrete members were modeled as an assembly of two 

types of linear elements—concrete struts and reinforcement 

ties. The axis of concrete struts in the model was assumed 

to be inclined at 45 degrees to longitudinal members, and 

shear strength was assumed to be controlled by the yielding 

of transverse reinforcement ties. By extending the 2-D 

plane truss model, Rausch (1929) developed a three-dimen-

sional (3-D) space truss model for torsion that consisted of 

longitudinal and hoop reinforcement-resisting tension and 

concrete struts-resisting compression. He also assumed that 
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the shear flow path would follow the centerline of the hoop 

reinforcement.

3.2.2 Skew-bending and space truss theories—In later 

years, research on torsion followed two theoretical tracks—

skew-bending and space truss. Lessig (1959) first proposed a 

skew-bending theory for reinforced concrete members with 

two modes of failure, Mode 1 and Mode 2, as explained in 

3.3.5. The skew-bending theory used only equilibrium equa-

tions and assumed that all reinforcement yielded before 

failure. Lessig’s research was followed by the skew-bending 

theory of Walsh et al. (1966) and Collins et al. (1968a,b), who 

proposed a third failure mode, Mode 3, and used all three 

modes to derive nondimensional torsion-bending moment 

interaction equations (Walsh et al. 1967), as described in 

3.3.5. Based on three modes of failure, a nondimensional 

interaction surface of torsion, shear, and flexure was derived 

by Elfgren (1972a,b) and Elfgren et al. (1974a,b). Rausch’s 

space truss theory for torsion was generalized by Lampert 

and Thürlimann (1969, 1971), who showed how the angle 

of inclination of the compression diagonals at failure could 

be determined from equilibrium if both the hoops and longi-

tudinal reinforcement were assumed to yield. Lampert and 

Collins (1972) showed that predictions of skew-bending and 

space truss theories were in close agreement.

3.2.3 Compression field theory (CFT)—The truss model 

with linear elements developed by Rausch was replaced in the 

1960s by a new type of truss model with membrane elements 

that were subjected to in-plane normal and shearing stresses. 

In determining the torsional strength of members where some 

reinforcement does not yield, consider compatibility conditions. 

Such conditions were introduced by Baumann (1972) for shear 

and by Collins (1973) for torsion. Mitchell and Collins (1974) 

incorporated compatibility conditions in their CFT, which also 

relied on equilibrium equations and nonlinear material models 

for concrete and reinforcement. Unlike previous models, the 

CFT calculates cracked member torsional behavior up to the 

peak torque. A compatibility condition derived by minimizing 

the strain energy in the system is used to calculate the angle of 

inclination in the truss model struts.

3.2.4 Softened truss model (STM)—In 1985, Hsu and Mo 

(1985a,b,c) proposed the STM by softening the concrete 

stress-strain curve. All of the aforementioned models satisfy 

Navier’s theory. Earlier models overestimated test strengths 

(Hsu 1968c), whereas the CFT, which uses spalling of 

concrete cover, and STM, which uses softening of concrete, 

have been shown to predict test results accurately (McMullen 

and El-Degwy 1985).

3.3—Historical development of theories for 

reinforced concrete members subjected to torsion

3.3.1 General—Section 3.1 summarizes the historical 

models developed to describe reinforced concrete members 

subjected to torsion, covering almost two centuries of 

research from 1826 to the early twenty-first century (2007). 

Classical theories include Navier (1826), Saint-Venant 

(1856), Bredt (1896), and Bach (1911). This review shows 

that the three principles of mechanics of materials (equilib-

rium, compatibility conditions, and materials stress-strain 

relationships) have been the basis for research in torsion 

of reinforced concrete members. (Equation notation in this 

section are provided in Chapter 2.)

3.3.2 Twentieth century—In the first 60 years of the twen-

tieth century, progress in reinforced concrete theories was 

made primarily on flexure. Early flexural theories for rein-

forced concrete assumed plane sections remained plane 

and stress-strain relationships of concrete and reinforce-

ment were linear. Equilibrium conditions for longitudinal 

stresses were used to determine the location of the neutral 

axis and stresses in concrete and reinforcement caused by 

the moment. The contribution of concrete tensile stresses 

was disregarded if concrete cracking was expected. Later 

flexural theories accounted for the nonlinear stress-strain 

response of the concrete and steel reinforcement so that the 

complete moment-curvature relationship for a section could 

be predicted. In terms of shear and torsion research, a signifi-

cant achievement was made with the development of truss 

models (Ritter 1899; Mörsch 1902; Rausch 1929). Research 

in torsion of reinforced concrete underwent significant 

advances during the last 40 years of the twentieth century. 

Two theories were developed—skew-bending and truss 

models with membrane elements. Skew-bending includes 

the theories of Lessig (1959), Yudin (1962), Collins et al. 

(1968a), Hsu (1968a), and Elfgren (1972a,b). Truss models 

include the theories of Nielsen (1967), Lampert and Thür-

limann (1968, 1969), Collins (1973), Mitchell and Collins 

(1974), Elfgren et al. (1974a,b), Collins and Mitchell (1980), 

and Hsu and Mo (1985a,b,c). Several researchers involved 

in the development of theories for torsion were members of 

ACI Committee 438 for Torsion, which is now the Joint ACI-

ASCE Committee 445 for Shear and Torsion (Fig. 3.3.2).

Development of these modern truss models was based on 

the same three principles of mechanics, which, in terms of 

torsion and shear, include the softened stress-strain relation-

ship of concrete.

3.3.3 Classical torsion theory for homogeneous members—

Navier (1826) derived a theory for torsion of homogeneous 

elastic members with circular cross sections. His theory is 

based on the three principles of mechanics of materials: 

Fig. 3.3.2—ACI Committee 438—Torsion, Mexico City, 

October 1976: Tom Hsu, Lennart Elfgren, Phil Ferguson, 

Art McMullen, Emory Kemp, Gordon Fisher, Paul Zia, and 

Michael Collins.
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equilibrium, compatibility conditions, and Hooke’s Law. 

Navier’s work also includes the linear theory for flexure. His 

book is recognized as the first on the mechanics of mate-

rials The three principles of the mechanics of materials 

have become well known as Navier’s theory. His theory 

defines the torsional rigidity for circular sections as GIp. By 

extending the formulas for the polar moment of inertia of 

circular sections to square sections, Navier found that the 

calculated strength for specimens tested by Duleau (1820) 

overestimated measured values by approximately 20 percent. 

He acknowledged that “the formulae for square members do 

not depict as accurately the behavior as those for circular 

members.” This inconsistency was explained three decades 

later by Saint-Venant (1856), who recognized that Navier’s 

polar moment of inertia could not reflect the warping defor-

mation of rectangular cross sections. To obtain the correct 

solution, Saint-Venant developed the semi-inverse method 

to solve all 15 differential and algebraic equations in the 

theory of elasticity developed by Cauchy (1828). By satis-

fying equilibrium, compatibility, and Hooke’s Law at each 

differential element of a member, Saint-Venant developed a 

solution that considered the warping displacements of rect-

angular cross sections. In Saint-Venant’s rigorous derivation, 

torsional rigidity is defined as GC. The torsional constant C 

is taken as βx3y, where the coefficient β is a function of the 

ratio y/x and varies between 0.141 (y/x = 1) and 0.333 (y/x 

= ∞). The maximum shear stress τmax occurs on the outside 

face of the rectangular section at midpoint of each long side 

and is equal to T/αx2y, where α is a coefficient that varies 

between 0.208 (y/x = 1) and 0.333 (y/x = ∞). The relationship 

between α and β is α = β/k, where
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According to Saint-Venant’s circulatory shear flow pattern, 

the maximum shear stresses occur at the outer periphery of 

a cross section, and the most efficient cross section to resist 

torsion is a thin tube, as shown in Fig. 3.3.3.

Bredt (1896) was able to derive a simple equilibrium 

equation for thin tubes by assuming the entire tube to be 

uniformly and fully stressed

 

q
T

A
o

=
2

 (3.3.3)

The area Ao is formed by sweeping the lever arm (symbol 

a in Fig. 3.3.3) around the axis of twist, a term later called 

the “lever arm area” (Hsu 1988). The torsional constant C for 

thin tubes with constant thickness was also simplified to C = 

4Ao
2t/po. Bach’s formula (1911) is a simplification of Saint-

Venant’s theory for thin-walled open sections, such as T, L, 

and I sections. Because the coefficient β for each rectangular 

component of such sections can be approximated as 1/3, the 

torsional constant for the entire section can be taken as the 

sum (Σ) of the components (C = 1/3Σx3y). The theories of 

Navier, Saint-Venant, Bredt, and Bach are applicable to rein-

forced concrete beams before cracking. They also laid the 

foundation for developing theories to calculate the behavior 

of cracked reinforced concrete members subjected to torsion.

3.3.4 Theories for reinforced concrete under flexure, 

shear, and torsion—Reinforced concrete was first developed 

in 1867 when Joseph Monier obtained a patent for rein-

forcing his concrete flowerpots with wrought iron wires. The 

concept of using steel reinforcement to overcome the weak-

ness of concrete in tension was quickly adapted to build-

ings and bridges, making the use of reinforced concrete for 

construction a widely accepted application in the last quarter 

of the nineteenth century. Such growth in applications gave 

rise to the demand for theories to analyze and design rein-

forced concrete structures.

3.3.4.1 Flexure theory—As reported by Delhumeau 

(1999), the first flexure theory to emerge was the linear 

flexure theory developed by Hennebique’s firm near the 

end of the nineteenth century. This theory served as the 

basis for the allowable stress design method addressed in 

the first ACI code [National Association of Cement Users 

(NACU) 1910]. Theories for nonlinear flexure occupied the 

attention of researchers until 1963 when strength design 

was incorporated in ACI 318 (ACI 318-63). Both linear and 

nonlinear theories for flexure satisfy the three principles of 

the mechanics of materials: equilibrium of parallel coplanar 

forces, Bernoulli’s linear strain compatibility, and the consti-

tutive laws of materials. A linear stress-strain curve of rein-

forcement and concrete is used for the linear flexure theory 

and a nonlinear stress-strain curve of concrete is used for the 

nonlinear flexure theory.

3.3.4.2 Torsion and shear theory—Following the adop-

tion of flexural strength design in ACI 318-63, the attention 

of researchers turned to more complex problems of torsion 

and shear in beams. Computer analysis of structures was 

becoming available, making it feasible for design engineers 

to compute the magnitude of torsions in their buildings. In 

addition, concrete box-girder bridges, which were becoming 

a competitive bridge type, needed to be designed for torsion. 

Shear is essentially a two-dimensional problem, requiring 

an understanding of the interaction of two principal stresses 

and strains in a membrane element. Torsion is compli-

cated because it is a three-dimensional problem involving 

Fig. 3.3.3—Torsion of thin tube and lever arm area Ao (Hsu 

1993 after Bredt 1896).
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the shear problem of membrane elements in a tube and the 

warping of tube walls that cause flexure in concrete struts. 

Figure 3.3.4.2 shows that the number of globally published 

papers on torsion began to surge around 1960 and peaked 

around 1970. The principles of equilibrium, compatibility 

conditions, and materials stress-strain relationships that 

were needed to solve torsion problems in reinforced concrete 

members were primarily developed between 1960 and 1985 

(Lampert and Thürlimann 1971; Lampert and Collins 1972; 

Elfgren et al. 1974a,b; Collins and Mitchell 1980; Hsu and 

Mo 1983). Theories and tests produced before 1980 are 

summarized in detail by Hsu (1984).

By 1985, researchers solved the basic problems of reinforced 

concrete design by applying Navier’s theory. Further research 

was necessary to refine the constitutive laws of materials for 

torsion and shear. The experimental work needed to generate 

new advancements is tedious and requires highly sophisticated 

testing equipment. Only two universities in North America—

the University of Toronto and University of Houston—are 

capable of studying the behavior of reinforced concrete shell 

and panel elements subjected to in-plane shear and normal 

stresses. The study of softened concrete in shear elements, 

which has been the subject of extensive research worldwide 

in the last three decades, continues to be a major research 

topic. The need for larger and more complex specimens has 

increased ongoing work at both universities. The high cost of 

experimental research needed for new developments in torsion 

imposes a limiting constraint on new research. For example, 

studying the behavior of full-scale girders with open sections 

that involve Saint-Venant and warping torsion is expensive. The 

future of torsion research is largely tied to available equipment 

or to the combined efforts of many institutions, or both.

3.3.5 Space truss model using struts and ties—The first 

theory for shear design of reinforced concrete was developed 

at the turn of the twentieth century when Ritter (1899) and 

Mörsch (1902) formulated the concept of plane trusses with 

struts and ties. They modeled a reinforced concrete member 

as a truss with two types of linear elements: struts made 

out of concrete and ties made out of steel reinforcement. 

The Ritter and Mörsch model represents the struts and ties 

as lines without cross-sectional dimensions, where forces 

satisfy equilibrium at points of intersection—a model with 

the advantage of conceptual clarity. Extending the 2-D plane 

truss model to a 3-D space truss model, Rausch (1929) devel-

oped a theory for torsion of reinforced concrete. Rausch’s 

space truss model, as shown in Fig. 3.3.5a, is made up of 

45-degree diagonal concrete struts, longitudinal reinforcing 

bars, and hoop reinforcing bars connected at the joints by 

hinges. Torsional moment is carried by the concrete struts 

in axial compression (dotted lines), and by the straight rein-

forcing bars in axial tension (solid lines) in the longitudinal 

(horizontal) and lateral (hoop) directions. Equilibrium of 

the joints in the longitudinal, lateral, and radial directions 

requires that the forces in the longitudinal bars (X), in the 

hoop bars (Q), and in the inclined struts (D) should be evenly 

distributed among all cells and joints. To satisfy equilibrium, 

the relationship between these forces should be X = Q = 

D/√2. As shown in Fig. 3.3.5a, the series of hoop forces Q 

at the joints constitute a shear flow q = Q/s. Using Bredt’s 

lever arm area concept, T can be related to q (or Q/s) by 

2Ao, as expressed by Bredt’s equation (Eq. (3.3.3)). The term 

Ao refers to the area enclosed by a series of straight lines 

connecting joints of the cross section.

Assuming that ultimate torque is reached when the forces 

in the transverse reinforcement reach the yield stress, then q 

= Q/s = Atfty/st and Eq. (3.3.3) becomes

 

T A
A f

s
n oh

t ty

t

= 2  (3.3.5)

Although the space truss model has the advantage 

of conceptual clarity in terms of simple assemblage of 

compression struts and tension ties, Rausch’s equation (Eq. 

Fig. 3.3.4.2—Number of published papers on torsion from 1900 to 2007 (plot prepared by 

A. Belarbi).
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