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Frequency Matchinq in 
Continuous Post-Tens1oned 
Concrete Highway Bridges 

By T. I. Campbell, P. F. Csagoly, 
and A. C. AgaiWal 

Synopsis: Results from dynamic load tests on a number of highway 
bridges of various types are presented. Impact factors greater than 
those recommended by AASHTO have been observed for bridge structures 
having frequencies of vibration in the range 2.5 to 4.5 Hz. This 
range corresponds to that of the bounce frequencies of trucks and 
hence a pseudo resonance condition is approached when a truck passes 
over the bridge. Testing of three bridges having longitudinally
voided, post-tensioned continuous concrete decks is described and 
results are compared with theoretical predictions obtained from 
dynamic analyses of equivalent continuous beams. It is concluded 
that the beam idealisation yields frequencies which are sufficiently 
accurate for design purposes. Further the dynamic response is 
dependent upon the 'frequency match' between the bridge deck and 
the traversing vehicle. The concept of frequency matching forms 
the basis of the dynamic load allowance provisions proposed by the 
new Ontario Highway Bridge Design Code. 

Keywords: bridge decks; concrete slabs; continuous beams; damping 
capacity; dynamic loads; dynamic tests; highway bridges; impact; 
post-tensioning; structural analysis; vibrations. 
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INTRODUCTION 

The Ministry of Transportation and Communications (MTC) of the 
Province of Ontario has recently carried out dynamic response tests 
on a number of bridge structures having continuous superstructures 
and which were known to exhibit a marked dynamic response when 
traversed by vehicular traffic. Results from these tests have been 
discussed elsewhere (1) and are summarised in Table 1 and Fig. 1. 
Table 1 shows measured values of the impact factor and frequency of 
vibration for thirteen bridges of varying types. Figure 1(a) shows 
a plot of the impact factor against the length of the main span, 
while in Fig. 1(b) the impact factor is plotted against the measured 
frequency. It can be seen from Fig. 1 that, with the exception of 
structures #8 and #13 the impact factors are higher than the AASHTO 
(2) values, and the frequencies of vibration lie within the range 
2.5 to 4.5 Hz. The bounce natural frequencies of present day trucks 
have been measured by MTC and found to lie within this range. Thus 
a pseudo resonance condition, with associated high amplitude of 
vibration, may be approached when a truck passes over the bridge. 
This can lead to a high impact factor being recorded for the 
structure. 

Results from tests on three of the above structures, numbers 1, 
7 and 12, are discussed in this paper. These three structures have 
longitudinally-voided, post-tensioned continuous concrete decks and 
are typical of many of the structures located on the highway system 
in the Province of Ontario. 
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COMPUTATION OF NATURAL FREQUENCIES 

Figure 2 shows a typical cross-section of the type of voided 
post-tensioned concrete deck used in the Province of Ontario. The 
voids are terminated a short distance on either side of each inter
mediate support and also at each end support to give a solid cross 
section at all the support locations. The deck is usually supported 
on elastomeric bearings at the end supports and on pot bearings at 
the intermediate supports. The intermediate supports are commonly 
isolated columns with each column carrying a pot bearing. 

This type of deck is normally designed for static response by 
assuming that longitudinal moments, shears and torques in the deck 
can be computed from a beam analysis where the entire deck section 
is assumed to act as a beam (3). Consequently, the same assumption 
has been made in formulating the dynamic analysis. The dynamic 
analysis capability of the ICES STRUDL II general purpose program (4) 
was used to compute the natural frequencies of the equivalent 
straight continuous beam. The lumped mass formulation was used and 
the accuracy of the resulting model was established by comparison 
with known theoretical solutions. Figure 3 shows that for three 
equal continuous spans, sufficient accuracy (within 3%) could be 
obtained by using five lumped masses per span. The effect of the 
increased moment of inertia of the deck over the supports (due to 
solid section as opposed to voided section) was investigated and 
found to be negligible. Consequently, the natural frequencies of 
structures #1, #7 and #12 were computed using five lumped masses per 
span and assuming uniform inertia throughout the length of the deck. 

FIELD TESTING 

The basic layouts of structures #1, #7 and #12 are shown in 
Fig. 4. Structure #1 has five spans on a straight alignment but the 
supports are skewed at an angle of approximately 15 degrees. 
Structure #7 has three spans aligned on a horizontal circular curve 
of radius 5,730 ft, which for practical purposes can be regarded as 
straight. Structure #12 has six spans aligned on a horizontal 
circular curve of 1,430 ft. Each intermediate support of 
structures #1 and #7 comprises twin columns while a single column is 
present at each intermediate support of structure #12. 

In the field tests, the vertical displacement of the deck, in a 
state of vibratory motion, was monitored at a number of locations 
along its length by means of deflectometers placed at ground level 
below the deck. The deflectometer (Figure 5) consists basically of 
a heavy steel base from which is cantilevered a short length of 
flexible strip. This strip is fitted with electrical 
resistance strain gauges which measure flexural strains. The 
connection between the cantilever beam and the desired location on 
the deck was provided by a fine steel wire under a tension 
sufficient to induce an initial deflection in the cantilever slightly 
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