Ref.	Specimen	b_w	d	A_s	A_{sw}	i_{sw}	Fabric	<i>n</i> _f	t_f	S_f	W_f	f_{cm}	E_f	Efu	V_{uexp}	V_{fexp}	\mathcal{E}_{feexp}
		(mm)	(mm)	(mm^2)	(mm^2)	(mm)			(mm)	(mm)	(mm)	(MPa)	(MPa)	(%)	(kN)	(kN)	(%)
	V-GPHDM-01	300	254	603	50	500	glass	1	0.042	500	500	34.07	90	2.90	102.22	39.33	0.720
ESC	V-BR3-01	300	254	603	50	500	basalt	1	0.053	500	500	33.78	95	3.15	98.48	36.12	-
[25]	V-BR3-02	300	254	603	50	500	basalt	1	0.053	500	500	33.78	95	3.15	60.69	-	0.200
	V-CONTROL	300	254	603	50	500	-	-	-	-	-	40.85	-	-	75.41	-	-
	S1-FRCM-F3- UN	150	250	2124	50	300	carbon	1	0.047	750	750	15.30	240	1.80	142.40	27.20	0.482
GOL	S1-FRCM-F4- UN	150	250	2124	50	300	steel	1	0.270	750	750	15.30	190	1.60	149.70	44.39	0.173
[30]	S1-CONTROL	150	250	2124	50	300	-	-	-	-	-	15.30	-	-	115.20	-	_
	CON	102	177	402	-	-	-	-	-	-	-	21.60	-	_	29.68	-	-
TET	UW_M1	102	177	402	-	-	carbon	1	0.095	460	460	23.80	225	1.80	44.80	12.10	0.16
[20]	UW_M2	102	177	402	-	-	carbon	2	0.095	460	460	23.80	225	1.80	68.86	36.16	0.23
	UW_M3	102	177	402	-	-	carbon	3	0.095	460	460	22.60	225	1.80	75.11	44.06	0.19
	C-N	150	307.5	998	-	-	-	-	-	-	-	37.50	-	_	61.75	-	_
AZA	UW-GT	150	307.5	998	-	-	glass	1	0.095	2000	2000	37.50	75	2.80	90.10	28.35	0.647
[33]	UW-CT1	150	307.5	998	-	-	carbon	1	0.047	2000	2000	37.50	230	1.60	75.90	14.15	0.213
	UW-CT2	150	307.5	998	-	-	carbon	1	0.047	2000	2000	37.50	230	1.60	126.70	64.95	0.977
	R30	150	225	942	28	200	-	-	-	-	-	30.80	-	_	79.00	-	—
CON	C-UJ-HI- TRC(5)	150	225	942	28	200	glass	1	0.055	500	500	30.80	80	2.90	109.50	30.88	0.156
	S-UJ-HI- TRC(5)	150	225	942	28	200	glass	1	0.055	40	246	31.30	80	2.90	85.00	5.11	0.159
[31]	R40	150	225	942	28	200	-	-		-	-	42.30	-	-	114.50	-	_
	C-UJ-HI- TRC(5)	150	225	942	28	200	glass	1	0.055	100	266	42.30	80	2.90	125.50	11.00	0.148
	S-UJ-HI- TRC(5)	150	225	942	28	200	glass	1	0.055	500	500	42.30	80	2.90	117.50	3.00	0.152
	CON_20	102	177	402	-	-	-	-	-	-	-	21.60	-	-	29.79	-	—
	UW_MCL3_20	102	177	402	-	-	carbon	3	0.062	460	460	20.80	225	1.60	67.60	38.91	0.263
BOU	UW_MG7_20	102	177	402	-	-	glass	7	0.044	460	460	20.00	74	1.60	82.50	54.91	0.681
[28]	CON	200	385	2513	-	-	-	-	-	-	-	14.00	-	_	93.38	-	_
	CH4_20	200	385	2513	-	-	carbon	4	0.095	880	880	14.00	225	1.60	225.73	132.3	0.201

Ref.	Specimen	b_w	d	A_s	A_{sw}	i_{sw}	Fabric	n _f	t _f	S_f	W_f	f_{cm}	E_{f}	\mathcal{E}_{fu}	Vuexp	V _{fexp}	Efeexp
		(mm)	(mm)	(mm^2)	(mm^2)	(mm)			(mm)	(mm)	(mm)	(MPa)	(GPa)	(%)	(kN)	(kN)	(%)
	CON	200	385	2513	-	-	-	-	-	-	-	14.00	-	-	124.23	-	-
TKB	CH2	200	385	2513	-	-	carbon	2	0.095	880	880	15.20	225	1.60	169.96	35.08	0.107
[21]	CL3	200	385	2513	-	-	carbon	3	0.062	880	880	13.80	225	1.60	180.63	58.17	0.181
	G7	200	385	2513	-	-	glass	7	0.044	880	880	13.80	74	1.60	217.22		0.540
TDI	С	150	272	603	24	230	-	-	-	-	-	30.50	-	-	58.25	-	—
1 KI [4]	M1	150	272	603	24	230	carbon	1	0.047	690	690	30.50	225	1.60	100.05	41.80	0.727
[ד]	M2	150	272	603	24	230	carbon	2	0.047	690	690	30.50	225	1.60	121.90	63.65	—
	CONTROL	150	198	226	28	270	-	-	-	-	-	33.00	-	_	69.00	-	—
SIL	INORGANIC	150	198	226	28	270	glass	1	0.055	530	530	33.00	73	1.60	116.50	47.50	2.30
[29]	MORTAR	150	198	226	28	270	glass	1	0.055	530	530	33.00	74	1.60	81.00	12.00	0.74
	CONTROL	150	270	402	-	-	-	-	-	-	-	28.00	-	-	52.50	-	-
	W50-N4	150	270	402	-	-	glass/carbon	1	0.107	50	180	28.00	240	1.75	58.50	6.00	0.156
	W50-N5	150	270	402	-	-	glass/carbon	1	0.107	50	137.5	28.00	240	1.75	61.50	9.00	0.178
JUN	W50-N6	150	270	402	-	-	glass/carbon	1	0.107	50	110	28.00	240	1.75	63.50	11.00	0.175
[8]	W100-N4	150	270	402	-	-	glass/carbon	1	0.107	100	250	28.00	240	1.75	60.50	8.00	0.144
	W100-N5	150	270	402	-	-	glass/carbon	1	0.107	100	166.7	28.00	240	1.75	72.00	19.50	0.234
	W100-N6	150	270	402	-	-	glass/carbon	1	0.107	600	600	28.00	240	1.75	81.00	28.50	0.206
	С	150	315	763	-	-	-	-	-	-	-	20.20	-	-	57.13	-	_
	L1	150	315	763	-	-	carbon	1	0.062	700	700	20.85	225	1.60	67.69	8.72	0.010
TZO	L2	150	315	763	-	-	carbon	2	0.062	700	700	21.64	225	1.60	70.56	9.35	0.053
[19]	H1	150	315	763	-	-	carbon	1	0.095	700	700	23.35	225	1.60	81.30	15.26	0.113
	H2	150	315	763	-	-	carbon	2	0.095	700	700	23.12	225	1.60	94.18	28.79	0.107
BAG	С	150	300	1413	28	180	-	-	-	-	-	42.00	-	-	111.50	-	-
[41]	Beam_4	150	300	1413	28	180	glass	1	0.055	200	275	42.00	80	1.60	147.00	35.50	1.070
	CONTROL	120	400	1884	50.24	200	-	-	-	-	-	32.70	-	-	295.00	-	-
BRU	PB-1/1	120	400	1884	50.24	200	glass	2	0.095	1800	1800	28.00	80	1.75	277.00	39.58	0.326
[18]	PB-1/2	120	400	1884	50.24	200	glass	4	0.095	1800	1800	28.00	80	1.75	277.50	40.08	0.165
	PB-1/3	120	400	1884	50.24	200	glass	6	0.095	1800	1800	28.00	80	1.75	293.00	55.58	0.112
	TRM-1		182.7	226	-	-	steel	1	0.254	76	126	20.68	205	1.75	31.00	1.15	0.010
ASK	SM-1	152	182.7	226	-	-	steel	1	0.254	76	126	20.68	205	1.75	31.15	1.30	0.012
[42]	TRM-2	152	182.7	226	-	-	steel	1	0.254	76	126	20.68	205	1.75	34.00	2.25	0.022

[1 mm = 0.0394 in; 1 kN = 224.820 lb; 1MPa=145.038 psi; 1 m²=10.764 ft²]

d A_{sw} fcm E_f Vuexp V_{fexp} h_w A_{s} i_{sw} tf S_f Wf Efu Ref. Specimen Fabric **n**f (mm) (mm) (mm^2) (mm^2) (mm)(mm) (mm)(mm)(MPa) (GPa) (%) (kN)(kN)**CON 20** 102 177 402 _ -21.60 -_ 29.79 -----2 TET SB MCH2 20 102 177 402 carbon 0.095 460 460 22.60 225 1.60 50.99 19.82 --225 [20] SB MCH3 20 102 177 402 3 0.095 460 460 22.60 1.60 62.44 31.28 carbon --177 CON 102 402 ----21.60 -_ 29.68 ---TBK SB M1 102 177 402 carbon 1 0.095 460 460 21.60 225 1.60 32.43 2.75 --SB M2 102 177 402 2 0.095 460 460 22.60 225 1.60 50.82 19.77 [21] carbon _ _ 177 SB M3 102 402 3 0.095 460 460 22.60 225 1.60 62.39 31.34 -carbon C-B 250 36.00 60.30 150 1885 ------_ --_ S0-FRCM 1 1885 0.047 750 750 36.00 230 2.80 126.82 150 250 -carbon 1 66.53 S0-FRCM 2 150 250 1885 carbon 1 0.047 750 750 36.00 230 2.80 147.52 87.22 --C-B 150 250 1885 _ -_ ---36.00 -_ 107.62 -AWA S1-FRCM 150 250 1885 28 150 carbon 1 0.047 750 750 36.00 230 2.80 176.02 68.40 S1-FRCM 2 1885 28 0.047 750 230 2.80 179.70 [32] 150 250 150 carbon 1 750 36.00 72.08 C-B 250 1885 133.28 150 -------36.00 -_ -S2-FRCM 1 150 250 1885 28 75 1 0.047 750 750 36.00 230 2.80 200.92 67.65 carbon S2-FRCM 2 150 250 1885 28 75 1 0.047 750 750 36.00 230 2.80 206.85 73.58 carbon 150 225 942 28 200 22.80 79.00 R30 --_ _ ---28 2.90 107.50 S-SB-P-TRC(10) 225 942 200 0.055 120 100 22.80 CON 150 glass 1 80 28.88 225 24.61 S-SB-P-TRC(5) 942 28 0.055 120 100 23.30 80 2.90 104.50 [31] 150 200 glass 1 CONTROL 150 270 402 --28.00 -_ 52.50 ----270 2000 28.00 1.75 W600-L1 150 402 glass/carbon 1 0.107 2000 240 71.50 19.00 JUN --W600-L2 150 270 2 0.107 2000 1.75 23.50 [8] 402 glass/carbon 2000 28.00 240 76.00 -C-N 150 307.5 998 -----37.50 -_ 61.75 --AZA SB G 150 307.5 998 glass 1 0.095 2000 2000 37.50 75 2.80 73.15 11.40 --SB FRCM 1 150 307.5 998 0.047 2000 2000 37.50 230 1.60 77.80 16.03 [33] _ carbon 1 307.5 0.047 60.95 SB FRCM 2 150 998 2000 2000 37.50 230 1.60 122.70 _ _ carbon 1 150 180 314 -20.00 30.40 BS-1 --_ ----_ -BS-2 2 0.064 1.75 10.93 150 180 314 basalt 400 400 20.00 319.4 41.33 -BS-3 150 180 314 basalt 2 0.064 400 400 20.00 319.4 1.75 41.76 11.36 --ALS BS-4 150 180 314 4 0.064 400 400 20.00 319.4 1.75 44.37 13.97 basalt --[27] BS-5 150 180 314 4 0.064 400 400 20.00 319.4 1.75 46.27 15.87 -basalt BS-6 150 180 314 basalt 2 0.064 400 400 20.00 319.4 1.75 41.69 11.29 --**BS-7** 150 180 314 2 0.064 400 400 20.00 319.4 1.75 41.69 11.29 basalt --314 0.064 400 400 20.00 319.4 1.75 48.13 17.73 BS-8 150 180 4 -basalt

Efeexp

(%)

_

0.130

0.138

_

0.036

0.130

0.138

_

1.230

1.613

_

1.265

1.333

_

1.251

1.361

_

1.75

1.49

_

0.164

0.102

0.260

0.241

0.917

_

0.074

0.077

0.047

0.054

0.077

0.077

0.060

0.054

Table 2—Side bonded FRCM shear strengthened specimens

180 $[1 \text{ mm} = 0.0394 \text{ in}; 1 \text{ kN} = 224.820 \text{ lb}; 1\text{MPa} = 145.038 \text{ psi}; 1 \text{ m}^2 = 10.764 \text{ ft}^2]$

314

-

-

150

BS-9

basalt

4

0.107

400

400

20.00

319.4

1.75

57.05

26.65

[1 GPa = 0.145 psi] **Fig. 1**—Side bonded specimens: (a) variation of the ratio; (b) failure mode

[1 GPa = 0.145 psi]

Fig. 2—U-shaped shear wraps: (a) variation of the ratio V_{fexp}/V_{uexp} with $E_f \rho_f$; (b) failure mode

[1 MPa = 145.038 psi] **Fig. 3**—Specimens shear strengthened with U-shaped FRCM *wraps:* (a) V_{fexp}/V_{uexp} versus s_f/w_f ; (b) failure mode

Fig. 4—Specimens shear strengthened with U-shaped FRCM wraps: (a) V_{fexp}/V_{uexp} versus s_f/w_f ; (b) failure mode

Fig. 5—Specimens strengthened in shear with U-shaped FRCM wraps: V_{fexp}/V_{uexp} versus $\rho_{st}E_{st}/\rho_{f}E_{f}$

Fig. 6—Specimens strengthened in shear with U-shaped FRCM wraps: V_{fexp}/V_{uexp} versus ρ_s

[1 GPa = 0.145 psi]

Fig. 7—Specimens shear strengthened with U-shaped FRCM strips: (a) variation of V_{fexp}/V_{uexp} versus $E_f \rho_f$ varying f_{cm} ; (b) failure mode

Fig. 8—Specimens shear strengthened with U-shaped FRCM wraps: $(\mathcal{E}_{feFRCM}/\mathcal{E}_{fu})_{exp}$ versus $E_f \rho_f / f_{cm}^{2/3}$

Fig. 10—Specimens strengthened with non-coated fibers: comparison between predicted and experimental results

Fig. 12—Comparison between predictions of models and experimental values: U-shaped FRCM

Fig. 9—Specimens shear strengthened with side bonded FRCM wraps: $(\mathcal{E}_{feFRCM}/\mathcal{E}_{fu})_{exp}$ versus $E_f \rho_f / f_{cm}^{2/3}$

Fig. 11—Specimens shear strengthened with coated fibers: predictions and experimental comparison

comparison

Fig. 15—Comparison between predictions of models and experimental values U-shaped FRCM coated fibers

comparison

Fig 20—TRB4 beam: numerical and experimental comparison

Luciano Ombres and Salvatore Verre

Confinement of Concrete Columns with SRG

Christian Carloni, Mattia Santandrea, Imohamed Ali Omar Imohamed, Lesley H. Sneed

Synopsis: in this study, the behavior of concrete compressive members confined by steel reinforced grout (SRG) is investigated. An experimental study was carried out to understand the behavior of short concrete prisms with a square cross-section confined by SRG subjected to a monotonic concentric compressive load. Test parameters considered in this study are the density of steel fibers, number of layers, corner condition, number of overlapping faces, and length of the reinforcement. The effectiveness of the confinement is evaluated in terms of peak stress with respect to unconfined prisms. SRG confinement is shown to improve the compressive strength of concrete prisms relative to the unconfined condition. An increase in the number of confinement layers results in an increase in the compressive strength and energy absorption.

Keywords: Composites, Concrete, Steel reinforced grout, Confinement.