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Thermal Stresses in Square Shaped Concrete 

Pavements 

by J. Silfwerbrand 

Synopsis: 

Thermal stresses in concrete pavements might be calculated according to a 
procedure developed by professor J. Eisenmann. The thermal stresses are 

dependent on the subgrade stiffness. Soft subgrades result in lower stresses. The 

Eisenmann procedure has been developed to cover square shaped slabs. This 

procedure is presented in this paper. Two calculation examples are also presented 

and discussed. 
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1. INTRODUCTION 

Concrete pavements are designed for traffic and thermal stresses. In Sweden, the 

thermal stresses have been calculated according to professor J. Eisenmann I. He 

bases his calculations on an effective span length. In the calculation of the 

effective span length, he considers the effect of the subgrade reaction using a 

beam element. Soft subgrades shorten the effective span length and, hence, 

reduce the thermal stresses. The procedure has been used to calculate thermal 

stresses under Swedish conditions in highway pavements, industrial pavements, 

and pavements in tunnels2-4. 

The temperature distribution in a concrete pavement can approximately be 

divided into two parts: (a) a uniform part and (b) a temperature gradient (Fig. 1). 

The uniform temperature distribution does not cause any major temperature 

stresses in jointed concrete pavement because the pavement is practically free to 

move horizontally at the joints. The temperature gradient causes curling or 

warping and - if the curling is restrained - thermal stresses. Hence, the immediate 

cause of the stresses is not the temperature, but the dead load that counteracts the 

curling tendency of the pavement. 

During a warm summer day, the top surface of the pavement is heated more than 

the bottom surface. A positive temperature gradient develops. The pavement slab 

curls with the central point moving upwards. The dead load of the pavement 

counteracts the curling and causes flexural tensile stresses in the bottom of the 

pavement (Fig. 2, left). During the night, the top surface gets cool more rapidly 

than the bottom surface. A negative temperature gradient develops and the 

pavement slab edges move upwards. In this case, the dead load causes flexural 

tensile stresses at the top of the slab (Fig. 2, right). Traffic loading causes 

flexural tensile stresses in the bottom of the slab, i.e., in the same part of the slab 
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as the positive gradient. Consequently, the positive temperature gradient usually 

is the most interesting one. In the following two sections, positive temperature 

gradients are dealt with in beams and slabs, respectively. 

2. RESEARCH SIGNIFICANCE 

Estimations of thermal stresses are necessary in the design of concrete 

pavements. Eisenmann's beam theory slightly modified to slabs is used in, e.g., 

Swedish and German pavement design procedures. The purpose of the research 

described in this paper is to develop a slab theory based on Eisenmann's 

assumptions. Some calculation examples presented show that the use of this slab 

theory leads to decreased calculated thermal stresses. 

3. THERMAL STRESSES IN BEAMS 

A thorough discussion of thermal stresses in beams is given in Eisenmann I. If 

the curling is completely restrained, but horizontal movements are possible (Fig. 

3), the temperature stress O'tempO is given by the following expression: 

Ea!J..O·h 
O'tempO = 2 

where, 

E = modulus of elasticity of concrete 

a. = coefficient of thermal expansion 

/19 =positive temperature gradient in °C/m (top surface warmest) 

(1) 

A tensile stress +crtempO develops on the bottom surface of the beam and a 

compressive stress 

-cr1emp0 develops in the top surface of the beam (Fig. 3). 

A beam subjected to a positive temperature gradient, resting on a subgrade, and 

free at the ends will curl. The central part tends to move upwards. The central 

point of the beam leaves the support only if the upward displacement due to 

temperature is greater than the downward displacement due to dead load q=ybh. 

We obtain: 

a!J..OL2 s(rhh)L4 

Wtemp = -8- > Wq = 384Ebh3 /12 (2) 

where, 

h = beam height 
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b = beam width 

L =beam length 

y = gravity of concrete in Nfm3 

By setting these displacements equal, Eisenmann could define a critical length 

Lcr: 

L = ·h 
cr Sy (3) 

Assuming that Ls;Lcl'> the maximum flexural tensile stress O'temp caused by the 

dead load is given by the following expressions: 

= 1.2•0'temp0' (!:__) 2 

Lcr 

3 ·rL2 

4·h 

3 · yL2 4EailB · h 2 

--;JT'£2' 5y 
cr 

(4) 

The maximum stress arises at mid span on the bottom surface of the beam. We 

see that the maximum stress for L=Lcr is 20 percent higher than the maximum 

stress O'temp for the completely restrained beam. We can limit the thermal 

stresses efficiently by reducing the beam length L. 

If L>Lcr> O'temp=1.2·cr1emp0· It arises at a distance Lc/2 from the beam end 

(Eisenmann I). In the following, let us assume that Ls;Lcr· 

Eisenmann has proposed a procedure to determine the subgrade influence on the 

thermal stresses!. He substitutes the slab length L with an effective span length 

Ler<L. He assumes that the beam ends sink down into the subgrade (Fig. 4). The 

displacement is w' at the end. The displacement is assumed to diminish linearly 

and is zero at a distance a' from the end. The subgrade reaction is proportional to 

the displacement (Winkler foundation). The following equilibrium equation can 

be established: 

kw'ba' 
(ybh)L = 2· --

2 
(5) 
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where, k is the modulus of subgrade reaction in Nfm3. The angle $ of rotation of 

each end consists of two parts depending on temperature gradient and dead load, 

respectively: 

_ at'!..BL (JvhW 
$- -2- - 24Ehh 3 /12 (6) 

Assuming small displacements, $=w'/a' and, hence, a' can be determined by 

combining Eqs. (5) and (6). We obtain: 

(7) 

Eisenmann gives simple expressions for certain values of the parameters. The 

modulus k of subgrade reaction must be known. For a two layer pavement 

system, Eisenmann giv<:s the following equation for determining k: 

k= E, 

0.83 · h · VEfE, 
(8) 

where, E11 is the modulus of elasticity of the subgrade. More complicated 

formulae are available for multi-layer systems (see, e.g., Eisenmann I). 

The effective span length is given by: 

Ler= L- 2·a'/3 (9) 

Finally, the maximum flexural tensile stress O'temp' can be calculated by using 

Eq. (4): 

'- 3. yL,J 2 - (Lef )2 
O'temp - --- - 1.2·0'temp0' -

4·h Lcr 
(10) 

In his book, Eisenmann did not discuss the influence of varying temperature 

gradients and different k values on the effective span length. Considering Eq. (7), 

we see that for small k values (soft subgrades) and if L approaches '\);Ea6.9/y·h, 

a' approaches infinity. Due to geometrical reasons, a' cannot exceed L/2. 

Consequently, Lep2L/3. However, also a span length reduction from L to 2L/3 

reduces the maximum stresses with more than 50 percent. 

Eisenmann's estimation of the subgrade influence on the thermal stresses is an 

engineering approach, but of course, a rather rough approximation. The 
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assumption that the beam edges, that have sunk down into the subgrade, are 

straight instead of curved will, of course, give an etToneous estimation of the 

support length a'. This error must, however, be compared with the error in 

estimating the modulus k of subgrade reaction. In many cases, the latter error 

will be far larger than the first one. 

4. THERMAL STRESSES IN SLABS 

Eisenmann uses roughly the same method to calculate thermal stresses in slabs. 

For many cases, the slab stresses can be computed simply from the beam stresses 

by dividing the beam stresses by (1-v), where vis Poisson's ratio. For v=O, e.g., 

Eisenmann's slab stress is 25 percent higher than his beam stress. In the 

following, we consider that the slab will obtain a thermal curvature in two 

perpendicular directions. 

Consider a square shaped slab subjected to a positive, linear temperature gradient 

This means that that the slab must be able to move horizontally without any 

restraint. It might be difficult to fulfil this demand completely in a practical case, 

anyhow, it is interesting to compute the thermal stresses due to a linear gradient 

separately. The slab thickness his assumed to be small in comparison to the slab 

length a. Hence, elementary plate theory can be used. If all slab edges are built 

in, maximum flexural tensile stresses of the magnitude a tempO will arise at the 

bottom surface. O"tempO has the value of 

a - ---,-----
tempo- 2(l-v) 

(11) 

If the slab edges, on the other hand, are free to move, the slab will curl. If the 

dead load is neglected, the interior part of the slab will leave the subgrade and 

the slab will be supported at the corners only. In the real case, the dead load q=yh 

counteracts this upward deflection. If we proceed in the same manner as 

Eisenmann does for beams, a critical slab length acr could be found by setting the 

upward movement due to temperature equal to the downward displacement due 

to dead load. 

The temperature gradient causes a spherical deflection surface with radius R 
(see, e.g., Timoshenko and Woinowsky-Krieger5). The radius is given by the 

following equation: 

l 

R 
(12) 
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and, hence, the difference Wtemp between slab center and comers 

is: 

(13) 

The downward displacement due to dead load can be determined by solving the 

plate bending equation numerically. The plate bending equation is given by, e.g., 

Timoshenko: 

where, 

w = deflection 

q = uniformly distributed load in Nfm2 

D = Eh3f(12·(1-v2)) 

x, y = rectangular coordinates 

(14) 

Corner-supported square shaped slabs subjected to uniformly distributed load q 

have been dealt with by, e.g., Silfwerbrand6 using the finite difference method. 

For Poisson's ratio v=0.2 the central deflection Wq has been estimated as: 

- qa4 - {,h)a4 
Wq- 0.0261· -- 0.0261· 3 ( ( 2 )) 

D Eh I 12· 1-v 
(15) 

Setting Wtemp=wq, we obtain the following expression for the critical slab length 

acr: 

EaAB (aAB acr = 0.798 · T.---::-T'i ·h = 0.893· ( 2 )'h 
J y1-v 

(16) 

For v=0.2, the bending moments m 1 and m2 at slab center and at mid span of an 

edge, respectively, are given by the following expressions: 

m 1 = O.IIO{yh)a2 (17) 

m2 = O.l53-(yh)a2 (18) 
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Corresponding flexural tensile stresses at the bottom of the slab are given by the 
following expressions: 

a - mt 
tempi- h2/ 6 

1 054· ·(_!!_)2 
. 2(1 + V XI-V) acr 

1.054 ( a ) 2 
-- ·O'tempO' -
I +v ac, 

0.878·0'temp0' (_!!_) 
2 

acr 

(19) 

O'temp2 = 1.221·0'temp0' (_!!_) 
2 

acr 

(20) 

Consequently, maximum flexural tensile stress appears at mid span of the edges. 

The edge stress ( O'temp2) is about 40 percent higher than the central stress 

(atempl). 

If the slab is resting on a soft subgrade, the areas close to the corners will sink 

down into the subgrade (Fig. 5). Assume that each area has a plane, triangular 

shape forming the base of a pyramid. The smaller sides of the pyramid have the 

length a'. The height of the pyramid is w'. The gravity center of the pyramid is 

situated at a distance a'/(2-{;2) along the diagonal from the corner. This model 

suffers from the same weakness as Eisenmann's beam mode, i.e., the slab parts, 

that have sunk down into the subgrade, are assumed to be plane. The slab model 

contains, however, an improvement: the slab supports are assumed to be located 

at the gravity center of the subgrade reactions. In Eisenmann's beam model, the 

resultant to the subgrade reaction is assumed to act at the beam ends when he 

computes the angle cjl of rotation (Eq. (6)). 

Assuming that the intensity of the subgrade reaction is proportional to the 

displacement, we can establish the following equation of equilibrium: 

kw'a 2 /2 
(yh)a2 = 4· ---

3 
(21) 

The angle of rotation along the diagonal at the corner is denoted cjl. Assuming 

small displacements, we obtain 
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w' 

+ = a'IJi 
(22) 

The temperature gradient and the dead load contribute both to the angle: 

(23) 

The temperature part +temp can be determined easily using the knowledge of the 

spherical deflection: 

a all(} ·a 
+temp= Ji ·R =· Ji (24) 

If fJw/fJx and fJw/f)y are known, the angle of rotation along the diagonal 

+q=8w/8n is given by (see, e.g., Timoshenko5): 

aw awax away aw I aw I 
= an = ax . a;; + ay . an = ax . Ji + ay . Ji (2S) 

For the square, fJw/fJx=i'Jwlf)y. A value of fJw/fJx can be estimated by solving the 

plate bending problem above numerically. We obtain: 

(26) 

where, is a factor depending on the location of the corner support (Fig. 6). 

Combining Eqs. (21), (22), (23), (24), and (26), we obtain the following 

expression for a': · 

, 
a = Vall(}- -,!(E-h.,....2 ) 

(27) 

where, k can be estimated using Eq. (8). If the supports move from the corners 

along the diagonal, the bending moment m1 and m2 will be reduced. We may 

write: 

(28) 

(29) 
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where, J.lt and J.12 are reduction factors (Figs. 7 and 8). Hence, the flexural tensile 

stresses can be calculated with the following expressions: 

O'templ1 = 0.878·J.1t'O'temp0' (.!!____) 
2 

acr 

(30) 

O'temp21 = 1.221·J.12'0'temp0' (.!!____) 
2 

0 cr 

(31) 

O'tempO is given by Eq. (11), v=0.2. 

The length a' of the support cannot be solved explicitly. A suitable calculation 

process is as follows: 

1) assume an a' value, e.g., a'assumed=a/10, 

2) for a support position at 0.25·a'assumed from Fig. 6, 

3) calculate a' from Eq. (27), 

4) if a':ta' assumed• repeat steps 2 and 3, 

5) ifa'=a'assumed• read J.lt and J.12 from Figs. 7 and 8, respectively, and 

6) calculate O'tempt' and O'temp2' from Eqs. (30) and (31). 

5. CALCULATION EXAMPLES 

Thermal stresses are computed and evaluated for four different examples (Table 

1). Examples Nos. 1A and 1B are based on examples in Eisenmann'. Examples 

Nos. 2A and 2B are based on Swedish conditions. 

The examples show that the resulting thermal stresses in the slab center are 

considerably lower than the stresses in the beams (20 %). The calculations also 

show that maximum tensile stress in the slab appears along the edges, at mid 

span. These stresses are somewhat larger than Eisenmann's beam stresses (10 %). 

The edge stresses are, however, considerably lower than the thermal stresses in a 

completely restrained slab subjected to the same thermal gradient (10- 40 %). 

6. CONCLUDING REMARKS 

A method has been developed to calculate thermal stresses in square shaped 

slabs. The method forms an analogue to Eisenmann's procedure to calculate 

thermal stresses in beams. Calculations show that the thermal stresses in the slab 

center are considerably lower than thermal stresses in beams. On the other hand, 

the maximum slab stresses, appearing along the edges, at mid span, are 
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