3. With the length of lap splice more than 40d, the full tensile force could be transferred.

4. The unit bond strength tended to increase with the increasing in bond length and lap splice length, but decrease for lap splice length between 40d and 60d.

5. For the bond tests of beam and truss types, it was not necessary to reinforce the ends of the FRP bars. This test method for researching the bond characteristic was wholly effective.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance of Shimizu Construction, Kumagaiguimi Co., Okumuragumi Constrution Co., and Mitsubishikasei Co., which provided the FRP bars.

REFERENCES

- (1). Design for Earthquake Resistant Reinforced Concrete Building Based on Ultimate Strength Concept, Architectural Institute of Japan. 1988.
- (2). P. M. Ferguson and J. N. Thompson, Development Length of High Strength Reinforcing Bars in Bond, ACI Journal, Proc. Vol. 59, No. 7, July, 1962.
- (3). E. Makitani, K. Machida and I. Irisawa, Bond Characteristics of Fiber Reinforced Composite Material Obtained from Beam Tests, Proceedings of the Japan Concrete Institute, Vol.13. No. 2, 1991.
- (4). A. E. Naaman, et al., Fiber Pull out and Bond Slip I : Analytical Study, Journal of Structural Engineering, ASCE, Vol. 17, No. 9, Sep. 1991.

Fiber	Denomi- nation of specimens		Shape of surface	Fiber content by volume (%)	Bond length			Constitution of FRP
			of FRP bars		10d	20d	30J	Dars
Carbon	C-1	Ο			0	0	0	Carbon fiber is wound spirally round a bar
	C-2	\triangle			0	0	0	Sand is stuch to the: surface of a bar
	C-3				0	0	0	A bar is constituted of seven strands twisted
	C-4	\bigtriangleup			0	0	0	A bar is formed to the braid on which sand is stuch
Aramid	A-1	\bigcirc	0 133330 0		\circ	\circ	\circ	Aramid fiber is wound spirally round a bar
	A−2				0	0	0	A bar is formed to the braid on which sand is stuch
	٨-3	$ \circ $	E (1	1	0	0	0	A bar is formed to the braid
Glass	G-1	\diamond	UIIII C		0	0	0	Glass fiber is wound spirally round a bar
Vinylon	¥-1	0	CXXXX C		0	0	0	The crossed vinyron fibers are wound round a bar
Steel	D10	ΣĴ			0	\overline{O}	—	Deformed bar

TABLE 1—CONSTITUTION AND SHAPE OF FRP BAR

Bond length (cm)	Fiber	Speci- mens	Compressive strength of concrete (N/mm ²)	Maximum tensile force (kN)	Tensile stress (N/mm²)	Bond strength (N/mm ²)	Failure ∎ode
	Carbon	C 1 C 2 C 3 C 4	26.0 33.7 29.4 34.7	134 127 67 136	1490 1150 - 1090	- - 5.1 -	rupture " pull out rupture
4 0	Aramid	A 1 A 2 A 3	28.9 30.1 27.3	112 122 94	1400 1020 -	- - 7.0	″ ″ pull out
	Glass	G 1	30.9	97	881	-	rupture
	Vinylon	¥ 1	27.1	48	505	-	"
2 0	Carbon	C 1 C 2 C 3 C 4	26.6 28.9 27.9 33.2	77 79 37 84	- - - -	11.4 10.6 5.6 10.6	pull out
	Aramid	A 1 A 2 A 3	\$1.3 31.8 30.1	60 95 60		9.4 12.3 9.0	"
	Glass	G 1	26.0	85	770	-	rupture
	Vinylon	¥ 1	28.3	48	-	7.0	pull out
	Stecl	D 10	28.8	40	562	-	rupture
10	Carbon	C 1 C 2 C 3 C 4	28.8 26.6 26.9 30.0	45 51 13 63		13.4 13.6 4.1 15.9	puliout " "
	Ara∎id	A 1 A 2 A 3	25. 1 29. 3 29. 1	51 72 40	- -	16.0 18.7 11.9	
	Glass	G 1	29.5	56	-	15.0	~
	Vinylon	¥ 1	29.5	31	-	8.8	~
	Steel	D 10	27. 1	12	539	-	rupture

TABLE 2-RESULTS OF BOND TEST

Spesi∎en	Lapped splice length (cm)	Maximum load (kN)	Tensile strength of FRP bar (N/mm ²)	Unit bond strength of FRP bar (N/mm ²)	Failure - mode
C-M-10	8(10d)	18.0	345	8.7	Pull-out
С-М-15	12(15d)	30.9	592	10.2	Pull-out
C-M-20	16(20d)	45.6	874	11.0	Pull-out
C-M-25	20(25d)	6 0.8	1170	11.8	Pull-out
С-м-30	24(30d)	77.6	1490	12.5	Pull-out
C-M-40	32(40d)	107.0	2060	13.0	Pul]-out
C-M-50	40(50d)	116.0	2220	11.3	Pull-out
C-M-60	48(60d)	101.0	1950	8.2	Pull-out

TABLE 3-DATA OBTAINED WITH TRUSS TYPE OF SPECIMENS

2-D25

Fig. 1-Equilibrium requirements in the beam-type specimen

Fig. 2-Details of specimen

Fig. 3—Unit bond stress and slip curves for bond length of 10d

Fig. 4-Relationship between maximum tensile force and bond length

Fig. 5-Details of specimen for lapped splice test

Fig. 6—State of a crack at the bottom slit

Fig. 8—Tensile stress and strain curves for lapped splice length of 15d

Fig. 9-Distribution of strain for tensile force at pulling-out

Fig. 10—Relationship between tensile stress at pull-out and lapped splice length

Fig. 11-Relationship between unit bond stress and lapped splice length

<u>SP 138-21</u>

Bond of GFRP Rebars to Ordinary-Strength Concrete

by M.R. Ehsani, H. Saadatmanesh, and S. Tao

<u>Synopsis:</u> An overview of a study on bond of Glass-fiber-reinforced-plastic (GFRP) rebars to concrete is presented. The 78 specimens to be tested include several variables, such as the mode of failure (i.e. pullout or splitting), concrete compressive strength, bar diameter, clear cover distance, and top bar effects. In addition, the effect of the radius of bend for hooked bars and the extension on the hooks is being investigated. The study is currently in progress and the results of the specimens tested to date are presented. Preliminary results indicate that the top bar effect observed for steel rebars is also present for GFRP bars. For hooked bars, larger radii of curvature increases the failure load of the bars significantly.

<u>Keywords</u>: Bending; <u>bond strength</u>; compressive strength; cover; <u>fiber</u> reinforced plastics; glass fibers; pullout tests; rebars; slippage; splitting stresses