
Table 4–Ultimate torsional moment - Analytical predictions and comparisons 

Beam 
Tu,exp 

(kN-m) 

Tu,calc.SP 

(kN-m) 

Tu,calc.SP 

(kN-m) 

Tu,calc.FRP 

(kN-m) 

Tu,calc.SFRC 

(kN-m) 
Tu,exp/Tu,calc. 

P-0(a) – – – – – – 

P-0(b) – – – – – – 

P-0(c) – – – – – – 

P-200(a) 2.39 2.54 – – – 0.94 

P-200(b) 2.31 2.76 – – – 0.84 

P-150 2.65 2.94 – – – 0.90 

SP-200 2.82 – 2.64 – – 1.07 

SP-150 3.07 – 3.02 – – 1.02 

F1-0 4.87 – – 4.79 – 1.02 

F2-0 6.65 – – 6.78 – 0.98 

SF1-0 2.41 – – – 1.40 1.72 

SF3-0 2.73 – – – 2.01 1.36 

SF1-200 2.73 – – – 2.65 1.03 

SF3-200 3.15 – – – 3.21 0.98 

 –  = null. 

 [1 kN-m = 8.851 in.-kip] 

 

The comparisons presented in Tables 3 and 4 reveal that expressions concerning the torsional moment at cracking 

and at ultimate for SFRC beams require further refinement since noticeable discrepancies between predictions and 

test results are observed. 

 

Furthermore, the analytical calculations of the torsional moment at cracking of the strengthened beams with C-FRP 

sheets are substantially lower than the experimentally obtain values. Although the conservative character of design 

criteria is rather anticipated, it is noted that the consideration of safety factors would further increase this difference. 

DESIGN METHODOLOGY AND EXAMPLES 

Proposed design procedure 

The ability of the previously described expressions to be used for design purposes is investigated. The proposed 

design methodology aims to provide simple and safe calculation of the required non-conventional transverse 

torsional reinforcement as an alternative of the common steel stirrups. The purpose of this torsion design is the total 

or the partial replacement of closed stirrups with (a) continuous rectangular steel spirals, or (b) externally bonded C-

FRP sheets, or (c) short steel fibers. The procedure is based on the ultimate torsional moment capacity of a solid RC 

beam with rectangular cross-section and includes the following steps for the three examined cases of non-

conventional reinforcement: 

 

Data: Cross-section dimensions, material properties, longitudinal bars and stirrups calculated by the design of a 

solid, rectangular RC beam subjected to a given imposed pure torsional moment according to the known code 

provisions of ACI 318-1937 or EC238. 

 

Step 1: Calculation of the actual crack angle of inclination, aact., based on the given longitudinal steel bars and 

transverse stirrups: 

, . , .

.tan
T st Ty st o

act

L Ly

A f p

A f s
α =  (13) 

 

Step 2: Calculation of the actual ultimate torsional moment capacity, Tu,act., based on the provided longitudinal 

reinforcement: 
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, . .

2
tan

o L Ly

u act act

o

A A f
T a

p
=  (14) 

 

Step 3a: Calculation of the required spacing of the continuous rectangular steel spiral reinforcement for total 

replacement of the given common individual closed steel stirrups: 

, ,

, . . . .

, ,, ,

. . . 2

.
, ,

2 2 2
tan cot tan

tan cot tan
tan cos

sin

o T l o T t o L
T L u act act act act

o o

T SP Ty SPT l T t oL
act act act

o o act
L Ly T SP Ty SP

A F A F A F
T T T a a a

p s p

A fF F pF
a a a s

p s p a
A f A f

ϕ
ϕ

≥ = → + ≥ ⇒

⇒ + ≥ ⇒ ≤
 

− 
 

 (15) 

 

Step 3b: Calculation of the required externally bonded C-FRP sheets for total replacement of the given common 

stirrups: 

( ) , . 2

,FRP .

.

tan
2 cot

L Lyu act

FRP FRP T act

o act o

A fT
n t f a

A a p
⋅ ≥ =  (16) 

 

Step 3c: Calculation of the required short steel fibers in terms of the steel fiber factor, F, for total (Eq. 17a) or partial 

(Eq. 17b) replacement of the given common stirrups: 

2 . .
2

, . 2 , . , .
, .

0.130.13
,

2 2
0.22 0.22

st st
u act c T st Ty st

u act c

o o
c c

o o

b h
T b h f k A fT b h f sF F

A A
bh f bh f

p p

− −−
≥ ≥  (17a and b) 

Design example 

An example of a solid reinforced concrete rectangular beam under pure torsion from the literature49 is selected to 

illustrate the steps involved in torsion design. As shown in Fig. 6, the cross-sectional dimensions of the beam are b = 

300 mm (12 in.) and h = 500 mm (20 in.). The concrete compressive strength is fc = 20 MPa (2900 psi) and the steel 

yield strength of both bars and stirrups is fy = 420 MPa (60,000 psi). The imposed design torsional moment is Tu = 

30 kN·m (266 in.-kip) without taking into account the strength reduction factor. Concrete cover is 40 mm (1.5 in.) 

from exterior face to stirrup centerline, thus xo = 220 mm (9 in.) and yo = 420 mm (17 in.) are the horizontal and 

vertical dimension of the centerline of outermost closed transverse torsional reinforcement, respectively. 

The required and provided amount of longitudinal steel bars and vertical closed steel stirrups based on the design 

solution using the following code provisions are49: 

 

 

ACI 318: 

Longitudinal bars: Required: 780.8 mm2 (1.18 in.2) 

 Provided: 6∅14 (6 No. 5) 924 mm2 (1.88 in.2) 

Closed stirrups: Required: 0.61 mm2/mm (0.0227 in.2/in.) 

 Provided: ∅8/80 mm (No. 3 at 4.50 in.) 0.625 mm2/mm (0.0245 in.2/in.) 

  or: No. 2 at 2.00 in. (0.0245 in.2/in.) 

EC2: 

Longitudinal bars: Required: 880 mm2 (1.37 in.2) 

 Provided: 6∅14 (6 No. 5) 923 mm2 (1.86 in.2) 

Closed stirrups: Required: 0.36 mm2/mm (0.0140 in.2/in.) 

 Provided: ∅8/125 mm (No. 3 at 7.10 in.) 0.40 mm2/mm (0.0155 in.2/in.) 

  or: No. 2 at 3.10 in. (0. 0155 in.2/in.) 
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Step 1: Calculation of the actual crack angle of inclination, aact., based on the given longitudinal steel bars and 

transverse stirrups: 

ACI 318: 
. .

50 420 1280
tan 0.93 43

924 420 80

× ×
= = → = °

× ×act actα α  

EC2: 
. .

50 420 1225
tan 0.73 36

924 420 125
act actα α× ×

= = → = °
× ×

 

Step 2: Calculation of the actual ultimate torsional moment capacity, Tu,act., based on the provided longitudinal 

reinforcement: 

ACI 318: 끫뢎끫룄,끫뢜끫뢜끫뢜. = 2×(0.85×92400)×924×4201280 0.93N⋅mm = 44.4 kN⋅m (393 in.-kip) 

EC2: 끫뢎끫룄,끫뢜끫뢜끫뢜. = 2×83789×924×4201225 0.73 N⋅mm = 38.8 kN⋅m (343 in.-kip) 

Step 3a: Calculation of the required spacing of the continuous rectangular steel spiral reinforcement for total 

replacement of the given common individual closed steel stirrups: 

ACI 318: 끫룀 ≤ 12800.932 50×420�924×420−50×420끫뢠끫뢠끫뢠45°끫뢠끫룀끫룀45°
� = 85 mm = (3.35 in.) 

Spirals with inclination 45°: ∅8/85 mm (No. 2 at 2.10 in.) 0.59 mm2/mm (0.0234 in.2/in.) 

EC2: 끫룀 ≤ 12250.732 50×420�924×420−50×420끫뢠끫뢠끫뢠45°끫뢠끫룀끫룀45°
� = 132 mm = (5.20 in.) 

Spirals with inclination 45°: ∅8/132 mm (No. 2 at 3.30 in.) 0.38 mm2/mm (0.0150 in.2/in.) 

Step 3b: Calculation of the required externally bonded C-FRP sheets for total replacement of the given common 

stirrups: 

ACI 318: (끫뢶끫롲끫롲끫롲 ⋅ 끫룂끫롲끫롲끫롲)끫뢦끫뢎,끫롲끫롲끫롲 ≥ 924×4201280 0.932 = 264 N/mm (18.09 kip/ft) 

One ply (nFRP = 1) of unidirectional C-FRP sheets with thickness tFRP = 0.22 mm (0.0087 in.) per ply as external 

transverse reinforcement with elastic modulus EFRP = 230 GPa (33359 ksi), ultimate elongation of the fibers at 

failure εu,FRP = 1.5% and stress of the sheets at failure due to the fiber rupture fT,FRP = 1.2 GPa (175 ksi). 

EC2: (끫뢶끫롲끫롲끫롲 ⋅ 끫룂끫롲끫롲끫롲)끫뢦끫뢎,끫롲끫롲끫롲 ≥ 924×4201225 0.732 = 169 N/mm (11.58 kip/ft) 

One ply (nFRP = 1) of unidirectional C-FRP sheets with thickness tFRP = 0.14 mm (0.0055 in.) per ply as external 

transverse reinforcement with elastic modulus EFRP = 230 GPa (33359 ksi), ultimate elongation of the fibers at 

failure εu,FRP = 1.5% and stress of the sheets at failure due to the fiber rupture fT,FRP = 1.2 GPa (175 ksi). 

Step 3c: Calculation of the required short steel fibers in terms of the steel fiber factor, F, for partial replacement of 

the given common stirrups for the example according to ACI 318-1937 or for total replacement of the stirrups for the 

example according to EC238: 

ACI 318: 끫롲 ≥ 44.4×106−0.13×3002×500√20−1.588220×420280 50×4200.222×(0.85×92400)1319 300×500√20 = 0.374 
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Closed steel stirrups: ∅8/280 mm (No. 2 at 6.90 in.) 0.180 mm2/mm (0.0071 in.2/in.) combined with short hooked-

ended steel fibers with length 30 mm (1.18 in.) and diameter 0.8 mm (0.03 in.) in volume fraction ρSF = 1.0 % and F 

= 1×1.0%×30/0.80 = 0.375. 

EC2: 끫롲 ≥ 38.8×106−0.13×3002×500√200.222×837891225 300×500√20 = 0.624 

Short hooked-ended steel fibers with length 30 mm (1.18 in.) and diameter 0.8 mm (0.03 in.) in volume fraction ρSF 

= 1.7 % and F = 1×1.7%×30/0.80 = 0.6375 without steel stirrups. 

 

The data and the derived design results for all the aforementioned cases with the examined reinforcement 

configurations are summarized and compared in Table 5. 

 

Table 5–Numerical example - Design results 

Case 
Data and reinforcement 

arrangements 
ACI 318 EC2 

Data 

Common for 

all cases 

1, 2, 3 and 4 

b = 

h = 

fc = 

fy =  

300 mm (12 in.) 

500 mm (20 in.) 

20 MPa (2900 psi) 

420 MPa (60,000 psi) 

aact. 43° 36° 

Tu,act. 
55.7 kN⋅m 

(493 in.-kip) 

38.8 kN⋅m 

(343 in.-kip) 

Longitudinal reinforcement 

Common for 

all cases 

1, 2, 3 and 4 

Steel reinforcing bars 
6∅14 

(6 No. 5) 

6∅14 

(6 No. 5) 

Transverse reinforcement 

Case 1 Common closed steel stirrups 
∅8/80 mm 

(No. 2 at 2.00 in.) 

∅8/125 mm 

(No. 2 at 3.10 in.) 

Case 2 
Continuous rectangular steel 

spirals with 45° inclination 

∅8/85 mm 

(No. 2 at 2.10 in.) 

∅8/132 mm 

(No. 2 at 3.30 in.) 

Case 3 

C-FRP sheets 

(One ply, EFRP = 230 GPa (33359 

ksi), εu,FRP = 1.5%) 

tFRP = 0.22 mm 

(0.0087 in.) 

tFRP = 0.14 mm 

(0.0055 in.) 

Case 4 

Short hooked-ended steel fibers 

lSF = 30 mm (1.18 in.) and 

dSF = 0.8 mm (0.03 in.) 

ρSF = 1.0 % 

and 

stirrups ∅8/280 mm 

(No. 2 at 6.90 in.) 

ρSF = 1.7 % 

 

 

CONCLUSIONS 

The results of this study indicate the following concluding remarks: 

• The overall torsional response of non-conventionally reinforced concrete beams is strongly influenced by the 

type of the provided transverse reinforcement. The application of epoxy bonded C-FRP sheets in the transverse 

direction proved a very effective external reinforcement against torsion. Strengthened beams with C-FRP sheets 

wrapping around the cross-section along their entire length exhibited significantly higher strength with compared 

to the corresponding pilot specimens and the other beams of the test program. 

• The use of continuous steel spirals with rectangular shape instead of common closed steel stirrups is a promising 

alternative transverse reinforcement configuration for beams under torsion. Spirals with locking effect due to the 
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favorably imposed twist provided increased torsional capacity. Further, spirals are more beneficial than stirrups 

in construction since proper bending formation, anchorage by hook on both ends and installation of every 

individual closed stirrup is a labor-intensive and time-consuming process, whereas spiral reinforcement is easy-

to-apply. Application of continuous spirals also increases confinement, anchorage efficiency and reinforcement 

cage stability. 

• The addition of short steel fibers with high volume fraction (3 %) in the concrete mass proved to be essential for 

the beam without stirrups since fibers as the only transverse reinforcement improved torsional response and 

increased strength especially after concrete cracking, whereas the corresponding pilot specimens did not exhibit 

post-cracking behavior. Beams with steel fibers and stirrups showed even more enhanced twist and ductility 

capabilities. 

• Analytical relationships for the prediction of the torsional moment at cracking and at ultimate of all the examined 

beams have also been proposed in this study. The different type of the provided non-conventional transverse 

reinforcement and their influence on the torsional response has been considered. Known design equations have 

been modified properly to take into account the contribution of spirals, C-FRP sheets and steel fibers to the 

torsional strength. Comparisons between predicted results yielded from the proposed expressions proved to be in 

good compliance with the experimental ones. 

• A feasible analytical procedure has been proposed for the design of concrete beams with non-conventional 

transverse reinforcement under torsion and numerical examples have also been presented to illustrate the 

application of the methodology. 
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TORSION OF RECTANGULAR CONCRETE SECTIONS 
 

Jan L. Vítek, Lukáš Boháček, Jaroslav Průša, Vladimír Křístek 

 

 

Synopsis: The paper deals with torsion of rectangular concrete sections. The pre-cracking stage and post-cracking 
stage are discussed.  The various design procedures are briefly mentioned and compared. The deficiencies of some 
methods are identified and discussed. The major part of the paper deals with the results of an experimental program 
executed at the Czech Technical University. The large-scale elements were tested under loading by torsion and by 
interaction of torsion and compression. The results showed that the effect of the compression force on the load 
carrying capacity of the elements in torsion differs according to the stage of performance. While at the pre-cracking 
stage the contribution of the compression is rather significant, when approaching the failure, it becomes reduced. 
Simplified technical methods of design of reinforcement were also discussed. It has been proved that the effect of 
the angle of the compressed diagonal in code models is rather important. The study showed that this effect is 
sometimes overestimated. Finally, in conclusions, some recommendations for future research are proposed.      
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INTRODUCTION 

Torsion of concrete sections is not usually a primary problem solved in the design of concrete structures. However, 
there are some cases where torsion became a governing problem for the entire design. The authors were involved in 
design of a highway bridge crossing a valley close to the capital of the Czech Republic, Prague. The arch bridge 
with the span of the arch 120 m (393.7 ft) was built between 1939 and 1949. There are two identical arch bridge 

structures, each for one direction of the highway (Fig. 1). The bridge was not used for many years, since the 
highway was not completed. In 1969 the highway was started to be built and the earlier built bridges were slightly 
reconstructed so that they could serve for traffic starting in 70th. The conditions for the layout and for the width of 
the highway changed since 1949, and the bridges had to be widened, so that it could accommodate two regular lanes 
in each direction. Now almost after 50 years of exploitation of the bridge, there is a necessity to extend the width of 
the bridge from two to three lanes. The bridge decks are rather near each other (Fig. 2), it is possible to widen the 
bridge deck only to the external sides, which results in eccentric loading of the arches. The contemporary width of 
the two lanes is 9.75 m (32 ft) and for three lanes 13.25 m (43.5 ft) is required as a minimum. If such a widening 
was designed, the arches would be subjected to significant loading in torsion. It was necessary to check, if the 
torsion can be taken by the arches.  
 

The transversal reinforcement in the arch was rather weak. It was not surprising, since the lack of steel in 40th led to 
high prices of steel and the designers were forced to keep the costs as low as possible. On the other hand, good 
quality of concrete was observed, and replacement of the arches was considered as unnecessary. The high ultimate 
load carrying capacity of the arch in torsion was achieved when the full section was active, i.e. prior to concrete 
cracking. If the twisting angle increased, the torsional moment carrying capacity dropped down and never reached 
the capacity of the plain concrete section in torsion (a similar response is plotted in Fig. 9).  
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