Strain associated with FRCM bond failure:	$\varepsilon_{fb} = 0.009741$	
Ultimate tensile strain of the textile:	$\varepsilon_{tk} = 0.01635$	

Loading conditions

Weight of the wall (characteristic value):	$G_{k1} = \rho \cdot g \cdot L \cdot t \cdot H = 51.8 \text{ kN} (11,645.1 \text{ lbf})$
Roof live load (characteristic value):	$G_{k2} = 59.1 \text{ kN} (13,286.2 \text{ lbf})$
Mass proportional seismic load:	E = 6.7 kN/m (459.1 lbf/ft)
Resultant axial load (design value):	$N_{Ed} = (G_{k1}/2) + G_{k2} = 85 \text{ kN} (19,108.76 \text{ lbf})$
Bending moment (design value):	$M_{Ed} = E \cdot (H^2/8) = 16.21 \text{ kN} \cdot \text{m} (11,959 \text{ lbf} \cdot \text{ft})$
Shear (design value):	$V_{Ed} = E \cdot (H/2) = 14.74 \text{ kN} (3313.68 \text{ lbf})$
Bending moment (design value):	$M_{Ed} = E \cdot (H^2/8) = 16.21 \text{ kN} \cdot \text{m} (11,959 \text{ lbf} \cdot \text{ft})$

Other data

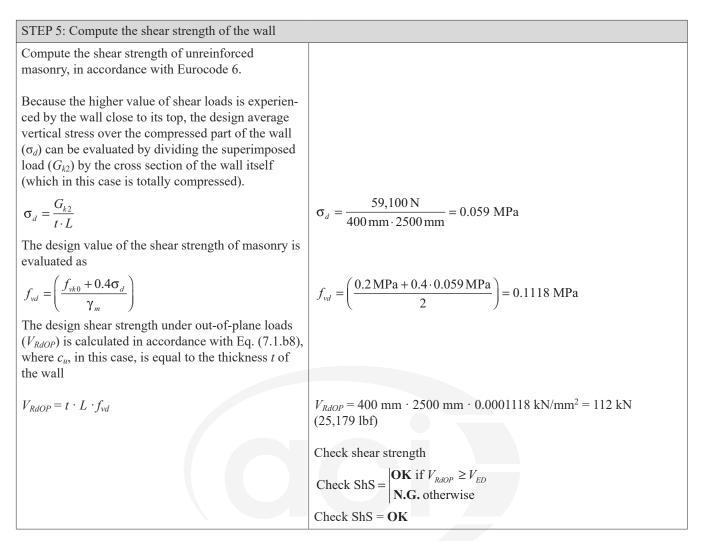
Safety factor:

 $\gamma_k = 0.85$

PROCEDURE	CALCULATION IN SI UNITS
STEP 1: Compute the existing strength	
Calculate the existing neutral axis depth c_{urm} , as: $c_{urm} = \begin{vmatrix} \frac{N_{Ed}}{L \cdot \gamma \cdot f_{mu} \cdot \beta} & \text{if } \frac{N_{Ed}}{L \cdot \gamma \cdot f_{mu} \cdot \beta} \le t \\ \text{masonry failure otherwise} \end{vmatrix}$	$c_{urm} = \frac{85,000 \text{ N}}{2500 \text{ mm} \cdot 0.85 \cdot 1.8 \text{ MPa} \cdot 0.8} = 28 \text{ mm}$
Calculate the existing nominal flexural strength M_{nURM} as: $M_{nURM} = N_{Ed} \cdot \left(\frac{t}{2} - \beta \cdot \frac{c_{urm}}{2}\right)$	$M_{nURM} = 85 \text{ kN} \cdot \left(\frac{0.4}{2} \text{ m} - 0.8 \cdot \frac{0.028}{2} \text{ m}\right) = 16 \text{ kN} \cdot \text{m} (11,801 \text{ lbf} \cdot \text{ft})$ $Check \text{ URM} = \left\ \begin{matrix} \mathbf{OK} \text{ if } M_{nURM} \ge M_{Ed} \\ \mathbf{N.G.} \text{ otherwise} \end{matrix}$ $Check \text{ URM} = \mathbf{N.G.}$ The URM wall does not have adequate flexural strength to resist the seismic action and requires strengthening. Design the FRCM flexural strengthening. The selected FRCM system consists of an aramid-glass (AG) fiber within a lime mortar layer. The AG textile is made of alkali-resistant glass fibers in weft direction (spacing 18 mm), and glass and aramid fibers in warp direction (spacing 15 mm).
	Mechanical end anchors are also used in the strengthening intervention.
STEP 2: Compute the FRCM design strain	
Using the coefficients α_1 and α_2 equal to 1.5 and 1, respectively, from Section 7.1.2, the FRCM design tensile strain can be determined from Eq. (5.2.b6), as: $\varepsilon_{fd} = \min\left(\frac{\alpha_1 \cdot \varepsilon_{fb}}{\gamma_M}, \frac{\varepsilon_{tk}}{\alpha_2 \cdot \gamma_M}\right)$	$\varepsilon_{fd} = \min\left(\frac{1.5 \cdot 0.009741}{1.5}, \frac{0.01635}{1 \cdot 1.5} \mathrm{m}\right) = 0.009741$
where the partial safety factor γ_M is equal to 1.5 (Section 5.2).	

This is a preview. Click here to purchase the full publication.

(aci)


Using a single-textile-layer FRCM system, uniform- ly applied to the surface of the wall (width of the single strip of textile wand spacing between strips s_{μ} both equal to the length of the wall L), the area of the reinforcement can determined as: Total width of the FRCM strips: $w_j = L$ Area of FRCM reinforcement: $A_f = t_f : w_f$ $A_j = 0.03 \text{ mm} \cdot 2500 \text{ mm} - 75 \text{ mm}^2$ STEP 4: Compute the new flexural capacity of the wall Identify the failure mode. Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two possible out-of-plane failure modes are: 1. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ where F_m' and F_f' are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_m = t - \frac{\varepsilon_{mm}}{\varepsilon_{gi} + \varepsilon_m}$ (7.1.3b1) Resultant load for the masonry in compression $F_m' = \gamma \cdot f_m \cdot \beta \cdot c_n' \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_g' = w_f \cdot t_f \cdot t_{gi} \cdot F_{gi}$ (7.1.3b3) $F_g' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 - 69.4 \text{ kN}$ Check failure mode $Check = \begin{bmatrix} Failure Mode I \text{ if } F_m' - F_f' < N_{gi} \\ Failure Mode I \text{ if } F_m' - F_f' < N_{gi} \\ Failure Mode I \text{ if } F_m' - F_f' < N_{gi} \\ Failure Mode I \text{ if } F_m' - F_f' < N_{gi} \\ Failure Mode I \text{ if } F_m' - F_f' < N_{gi} \\ Failure Mode I \text{ if } F_m' - F_f' < N_{gi} \\ Failure Mode I \text{ if } F_m' - F_f' < N_{gi} \\ Failure Mode I \text{ if } Hotervise} \\ \end{bmatrix}$	STEP 3: Select the layout of FRCM reinfo	prcement	
$\begin{aligned} y = \text{splited to the surface of the wall (width of the single strip of textile wj and spacing between strips sj, both equal to the length of the wall I), the area of the reinforcement can determined as: \begin{aligned} &\text{Total width of the FRCM strips: } w_j = L \\ &\text{Area of FRCM reinforcement: } A_j = t_j \cdot w_j & A_j = 0.03 \text{ mm} \cdot 2500 \text{ mm} = 75 \text{ mm}^2 \end{aligned} \begin{aligned} &\text{STEP 4: Compute the new flexural capacity of the wall } \\ &\text{Identify the failure mode.} \end{aligned} \begin{aligned} &\text{Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two possible out-of-plane failure modes are: \\ &\text{I. Failure Mode II} - Crushing of the masonry in compression, if N_{kd} > F_{m}' = P_{j}' & \text{Compute the newsonry and the FRCM attain their ultimate strain, as: \\ &\text{Neutral axis depth} & c_{jd}' + c_{m}' - B_{j}' & c_{m}' - L & (7.1.3b1) & c_{j}' = 400 \text{ mm} \cdot \frac{0.0035}{0.009741 + 0.0035} = 106 \text{ mm} & \text{Resultant load for the masonry in compression} \\ &F_{m}' = \gamma \cdot f_{m} \cdot \beta \cdot c_{n}' \cdot L & (7.1.3b2) & F_{m}' = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN} \\ &\text{Resultant load for the FRCM in tension} & F_{j}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN} \\ &\text{Check failure mode} & Information of the result of the res$			
single strip of textile wy and spacing between strips s_{μ} both equal to the length of the wall <i>L</i>), the area of the reinforcement can determined as: Total width of the FRCM strips: $w_{f} = L$ Area of FRCM reinforcement: $A_{f} = t_{f} \cdot w_{f}$ $A_{f} = 0.03 \text{ mm} \cdot 2500 \text{ mm} = 75 \text{ mm}^{2}$ STEP 4: Compute the new flexural capacity of the wall Identify the failure mode. Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two pos- sible out-of-plane failure modes are: 1. Failure Mode I—Crushing of the masonry in compression, if $N_{kd} > F_{m}^{\prime} - F_{f}^{\prime}$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{kd} < F_{m}^{\prime} - F_{f}^{\prime}$ where F_{m}^{\prime} and F_{f}^{\prime} are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c_{m}^{\prime} = t \cdot \frac{E_{m}}{E_{fd} + E_{m}}$ (7.1.3b1) $c_{m}^{\prime} = 400 \text{ mm} \cdot \frac{0.0035}{0.009741 + 0.0035} = 106 \text{ mm}$ Resultant load for the masonry in compression $F_{m}^{\prime} = \gamma \cdot f_{m} \cdot \beta \cdot c_{n}^{\prime} \cdot L$ (7.1.3b2) $F_{m}^{\prime} = 0.85 \cdot 0.0018 \text{ kN/mm}^{2} \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Check failure mode $F_{f}^{\prime} = w_{f} \cdot t_{f} \cdot s_{gl} \cdot E_{f}$ (7.1.3b3) $F_{f}^{\prime} = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure Mode I if $F_{m}^{\prime} - F_{f}^{\prime} < N_{sd}$			
the reinforcement can determined as: Total width of the FRCM strips: $w_f = L$ Area of FRCM reinforcement: $A_f = t_f \cdot w_f$ $A_f = 0.03 \text{ mm} \cdot 2500 \text{ mm} = 75 \text{ mm}^2$ STEP 4: Compute the new flexural capacity of the wall Identify the failure mode. Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two pos- sible out-of-plane failure modes are: 1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_m' - F_f'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ 2. Failure Mode II—Failure avaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate straim, as: Neutral axis depth $c'_n = t \cdot \frac{E_m}{E_{faf} + E_m}$ (7.1.3b1) $c'_n = 400 \text{ mm} \cdot \frac{0.0035}{0.009741 + 0.0035} = 106 \text{ mm}$ Resultant load for the masonry in compression $F_m' = \gamma \cdot f_m \cdot \beta \cdot c_n' \cdot L$ (7.1.3b2) $F_n' = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Check failure mode $Check = \begin{bmatrix} Failure Mode I \text{ if } F_m' - F_f' < N_{Ed} \\ Failure Mode I \text{ if } F_m' - F_f' < N_{Ed} \\ Failure Mode I I otherwise \end{bmatrix}$			
Total width of the FRCM strips: $w_f = L$ $A_f = 0.03 \text{ mm} \cdot 2500 \text{ mm} = 75 \text{ mm}^2$ STEP 4: Compute the new flexural capacity of the wallIdentify the failure mode.Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two pos- sible out-of-plane failure modes are:I1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_m' - F_f'$ \odot 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ \odot where F_m' and F_f' are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: $c_n' = 400 \text{ mm} \cdot \frac{0.0035}{0.009741 + 0.0035} = 106 \text{ mm}$ Resultant load for the masonry in compression $F_m' = \gamma \cdot f_m \cdot \beta \cdot c_n' \cdot L$ $(7.1.3b1)$ $F_m' = \gamma \cdot f_m \cdot \beta \cdot c_n' \cdot L$ $(7.1.3b2)$ $F_m' = 2500 \text{ mm} \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F_f' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ $F_f' = w_f \cdot t_f \cdot v_{Ed} \cdot E_f$ $(7.1.3b3)$ $F_f' = w_f \cdot t_f \cdot v_{Ed} \cdot E_f$ $(7.1.3b3)$ $F_f' = augree Mode I if F_m' - F_f' < N_{Ed}$		the area of	
Area of FRCM reinforcement: $A_{j} = t_{j} \cdot w_{j}$ $A_{j} = 0.03 \text{ mm} \cdot 2500 \text{ mm} = 75 \text{ mm}^{2}$ STEP 4: Compute the new flexural capacity of the wall Identify the failure mode. Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two pos- sible out-of-plane failure modes are: 1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_{m}' - F_{j}'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_{m}' - F_{j}'$ where $F_{m}' = nf_{j}'$ are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_{w} = t \cdot \frac{\varepsilon_{m}}{\varepsilon_{jd}} + \varepsilon_{m}}$ (7.1.3b1) $c'_{w} = 400 \text{ mm} \cdot \frac{0.0035}{0.009741 + 0.0035} = 106 \text{ mm}$ Resultant load for the masonry in compression $F_{m}' = \gamma \cdot f_{mw} \cdot \beta \cdot c'_{w} \cdot L$ (7.1.3b2) $F_{m}' = 0.85 \cdot 0.0018 \text{ kN/mm}^{2} \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F_{j}' = w_{j} \cdot t_{j} \cdot \varepsilon_{jd} \cdot E_{j}$ (7.1.3b3) $F_{j}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure Mode I if $F_{m}' - F_{j}' < N_{Ed}$	the reinforcement can determined as:		
STEP 4: Compute the new flexural capacity of the wallIdentify the failure mode.Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two pos- sible out-of-plane failure modes are:1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_m' - F_f'$ 2. Failure Mode II—Pailure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ 3. Failure Mode II—Pailure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ where F_m' and F_f are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as:Neutral axis depth $c'_u = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mm}}$ $c'_u = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mm}}$ Resultant load for the masonry in compression $F_m' = \gamma \cdot f_m \cdot \beta \cdot c_u' \cdot L$ $F_m' = \gamma \cdot f_m \cdot \beta \cdot c_u' \cdot L$ Resultant load for the FRCM in tension $F_f' = w_f \cdot t_f \cdot \varepsilon_{gd} \cdot E_f$ $F_f' = w_f \cdot t_f \cdot \varepsilon_{gd} \cdot E_f$ (7.1.3b2)Resultant load for the FRCM in tension $F_f' = w_f \cdot t_f \cdot \varepsilon_{gd} \cdot E_f$ (7.1.3b3) $F_f' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check =Failure Mode II otherwise	Total width of the FRCM strips: $w_f = L$		
Identify the failure mode. Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two pos- sible out-of-plane failure modes are: 1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_m' - F_f'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ where F_m' and F_f' are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_u = t \cdot \frac{\varepsilon_m}{\varepsilon_{gd}} + \varepsilon_m}$ (7.1.3b1) Resultant load for the masonry in compression $F_m' = \gamma \cdot f_{m} \cdot \beta \cdot c_n' \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_g' = w_f \cdot t_f \cdot \varepsilon_{gd} \cdot E_f$ (7.1.3b3) $F_m' = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Check failure mode $Check = \begin{bmatrix} Failure Mode I if F_m' - F_f' < N_{Ed} \\ Failure Mode II otherwise \end{bmatrix}$	Area of FRCM reinforcement: $A_f = t_f \cdot w_f$		$A_f = 0.03 \text{ mm} \cdot 2500 \text{ mm} = 75 \text{ mm}^2$
Given that no steel reinforcement is present in the wall, in accordance with Section 7.1.2, the two pos- sible out-of-plane failure modes are: 1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_m' - F_f'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ where F_m' and F_f are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_n = t \cdot \frac{\varepsilon_{nm}}{\varepsilon_{gd} + \varepsilon_{mn}}$ (7.1.3b1) Resultant load for the masonry in compression $F_m' = \gamma \cdot f_{mn} \cdot \beta \cdot c_n' \cdot L$ (7.1.3b2) $F_m' = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F_f' = w_f \cdot t_f \cdot \varepsilon_{gd} \cdot E_f$ (7.1.3b3) $F_f' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode $Check = \begin{bmatrix} Failure Mode I \text{ if } F_m' - F_f' < N_{Ed} \\ Failure Mode II otherwise \end{bmatrix}$	STEP 4: Compute the new flexural capacity	ty of the wa	11
wall, in accordance with Section 7.1.2, the two possible out-of-plane failure modes are: 1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_{m'} - F_{f'}'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_{m'} - F_{f'}'$ where $F_{m'}$ and $F_{f'}'$ are evaluated under the preliminary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_{u'} = t \cdot \frac{\mathfrak{E}_{mu}}{\mathfrak{E}_{fd} + \mathfrak{E}_{mu}}$ (7.1.3b1) $c'_{u} = 400 \text{ mm} \cdot \frac{0.0035}{0.009741 + 0.0035} = 106 \text{ mm}$ Resultant load for the masonry in compression $F_{m'}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u'} \cdot L$ (7.1.3b2) $F_{m'}' = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F'_{f} = w_{f'} \cdot t_{f'} \cdot \mathfrak{E}_{fd} \cdot \mathfrak{E}_{f'}$ (7.1.3b3) $F'_{f} = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check = Failure Mode I if $F'_{m} - F'_{f} < N_{Ed}$	Identify the failure mode.		
wall, in accordance with Section 7.1.2, the two possible out-of-plane failure modes are: 1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_{m'} - F_{f'}'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_{m'} - F_{f'}'$ where $F_{m'}$ and $F_{f'}'$ are evaluated under the preliminary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_{u'} = t \cdot \frac{\mathfrak{E}_{mu}}{\mathfrak{E}_{fd} + \mathfrak{E}_{mu}}$ (7.1.3b1) $c'_{u} = 400 \text{ mm} \cdot \frac{0.0035}{0.009741 + 0.0035} = 106 \text{ mm}$ Resultant load for the masonry in compression $F_{m'}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u'} \cdot L$ (7.1.3b2) $F_{m'}' = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F'_{f} = w_{f'} \cdot t_{f'} \cdot \mathfrak{E}_{fd} \cdot \mathfrak{E}_{f'}$ (7.1.3b3) $F'_{f} = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check = Failure Mode I if $F'_{m} - F'_{f} < N_{Ed}$			
sible out-of-plane failure modes are: 1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_{m'} - F_{f'}$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F'_{m'} - F_{f'}$ where $F_{m'}$ and $F_{f'}$ are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_{u} = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{jd} + \varepsilon_{mu}}$ (7.1.3b1) Resultant load for the masonry in compression $F_{m'} = \gamma \cdot f_{mu} \cdot \beta \cdot c'_{u'} \cdot L$ (7.1.3b2) $F_{m'} = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F_{f'} = w_{f'} \cdot \varepsilon_{fd} \cdot E_{f}$ (7.1.3b3) $F_{f'} = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check = Failure Mode I if $F'_{m} - F'_{f'} < N_{Ed}$			
1. Failure Mode I—Crushing of the masonry in compression, if $N_{Ed} > F_m' - F_f'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_f'$ where F_m' and F_f' are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_u = t \cdot \frac{\mathcal{E}_m}{\mathcal{E}_{fd} + \mathcal{E}_m}$ (7.1.3b1) $c''_u = 400 \text{ mm} \cdot \frac{0.0035}{0.009741 + 0.0035} = 106 \text{ mm}$ Resultant load for the masonry in compression $F_m' = \gamma \cdot f_{mu} \cdot \beta \cdot c_u' \cdot L$ (7.1.3b2) $F_m' = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F_f' = w_f \cdot t_f \cdot \mathfrak{e}_{fd} \cdot E_f$ (7.1.3b3) $F_f' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check = Failure Mode I if $F'_m - F'_f < N_{Ed}$		2 100 pos	
compression, if $N_{Ed} > F_m' - \bar{F}_j'$ 2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_m' - F_j'$ where F_m' and F_j' are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_u = t \cdot \frac{\mathcal{E}_{mu}}{\mathcal{E}_{fd} + \mathcal{E}_{mu}}$ (7.1.3b1) Resultant load for the masonry in compression $F_m' = \gamma \cdot f_{mu} \cdot \beta \cdot c_u' \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_j' = w_f \cdot t_f \cdot \mathfrak{E}_{fd} \cdot E_f$ (7.1.3b3) $F_j' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check = Failure Mode I if $F'_m - F'_j < N_{Ed}$			
2. Failure Mode II—Failure of FRCM in tension, if $N_{Ed} < F_{m}' - F_{f}'$ where F_{m}' and F_{f}' are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_{u} = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}}$ (7.1.3b1) Resultant load for the masonry in compression $F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f}$ (7.1.3b3) $F'_{f} = 2500 \text{ mm} \cdot 0.003 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode Check = Filler Mode I if $F'_{m} - F'_{f} < N_{Ed}$	•	nry in	
$N_{Ed} < F_{m}' - F_{f}'$ where F_{m}' and F_{f}' are evaluated under the preliminary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_{u} = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}} \qquad (7.1.3b1)$ Resultant load for the masonry in compression $F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L \qquad (7.1.3b2)$ Resultant load for the FRCM in tension $F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f} \qquad (7.1.3b3)$ $F'_{f} = 2500 \text{ mm} \cdot 0.0037 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode $Check = \left\ \begin{array}{c} \text{Failure Mode I if } F'_{m} - F'_{f} < N_{Ed} \\ \text{Failure Mode I I otherwise} \end{array} \right\ $	compression, if $N_{Ed} > P_m - P_f$		
where F_m' and F_j' are evaluated under the preli- minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_u = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}}$ (7.1.3b1) Resultant load for the masonry in compression $F_m' = \gamma \cdot f_{mu} \cdot \beta \cdot c_u' \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_j' = w_f \cdot t_f \cdot \varepsilon_{fd} \cdot E_f$ (7.1.3b3) $F_j' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check = Failure Mode I if $F'_m - F'_j < N_{Ed}$	2. Failure Mode II—Failure of FRCM in t	ension, if	
minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_{u} = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}}$ (7.1.3b1) Resultant load for the masonry in compression $F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f}$ (7.1.3b3) $F_{f}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode $Check = \ Failure Mode I \text{ if } F'_{m} - F'_{f} < N_{Ed}$	$N_{Ed} < F_m' - F_f'$		
minary assumption that both the masonry and the FRCM attain their ultimate strain, as: Neutral axis depth $c'_{u} = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}}$ (7.1.3b1) Resultant load for the masonry in compression $F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f}$ (7.1.3b3) $F_{f}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode $Check = \ Failure Mode I \text{ if } F'_{m} - F'_{f} < N_{Ed}$	where E' and E' are evaluated under the	nreli-	R
FRCM attain their ultimate strain, as:Neutral axis depth $c'_u = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}}$ $c'_u = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}}$ (7.1.3b1)Resultant load for the masonry in compression $F'_m = \gamma \cdot f_{mu} \cdot \beta \cdot c_u' \cdot L$ (7.1.3b2) $F'_m = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F'_f = w_f \cdot t_f \cdot \varepsilon_{fd} \cdot E_f$ (7.1.3b3) $F'_f = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure modeCheck =Failure Mode I if $F'_m - F'_f < N_{Ed}$ Failure Mode II otherwise			
$c'_{u} = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}} $ (7.1.3b1) Resultant load for the masonry in compression $F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L $ (7.1.3b2) Resultant load for the FRCM in tension $F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f} $ (7.1.3b3) $F_{f}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode Check = Failure Mode I if $F'_{m} - F'_{f} < N_{Ed}$			
$c'_{u} = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{fd} + \varepsilon_{mu}} $ (7.1.3b1) Resultant load for the masonry in compression $F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L $ (7.1.3b2) Resultant load for the FRCM in tension $F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f} $ (7.1.3b3) $F_{f}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode Check = Failure Mode I if $F'_{m} - F'_{f} < N_{Ed}$			
Resultant load for the masonry in compression $F_{m'} = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u'} \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_{f'} = w_f \cdot t_f \cdot \varepsilon_{fd} \cdot E_f$ (7.1.3b3) $F_{f'} = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check = $\begin{vmatrix} \text{Failure Mode I if } F_m' - F_f' < N_{Ed} \\ \text{Failure Mode II otherwise} \end{vmatrix}$			
Resultant load for the masonry in compression $F_{m'} = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u'} \cdot L$ (7.1.3b2) Resultant load for the FRCM in tension $F_{f'} = w_f \cdot t_f \cdot \varepsilon_{fd} \cdot E_f$ (7.1.3b3) $F_{f'} = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$ Check failure mode Check = $\begin{vmatrix} \text{Failure Mode I if } F_m' - F_f' < N_{Ed} \\ \text{Failure Mode II otherwise} \end{vmatrix}$	$c'_{u} = t \cdot \frac{\varepsilon_{mu}}{\varepsilon_{mu}}$	(7.1.3b1)	$c'_{\mu} = 400 \text{ mm} \cdot \frac{0.0035}{1000000000000000000000000000000000000$
$F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L $ (7.1.3b2) $F_{m}' = 0.85 \cdot 0.0018 \text{ kN/mm}^{2} \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f} $ (7.1.3b3) $F_{f}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode $Check = \left\ \begin{array}{c} \text{Failure Mode I if } F_{m}' - F_{f}' < N_{Ed} \\ \text{Failure Mode II otherwise} \end{array} \right\ $	$\varepsilon_{fd} + \varepsilon_{mu}$	(,	<i>"</i> 0.009741+0.0035
$F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L $ (7.1.3b2) $F_{m}' = 0.85 \cdot 0.0018 \text{ kN/mm}^{2} \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$ Resultant load for the FRCM in tension $F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f} $ (7.1.3b3) $F_{f}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode $Check = \left\ \begin{array}{c} \text{Failure Mode I if } F_{m}' - F_{f}' < N_{Ed} \\ \text{Failure Mode II otherwise} \end{array} \right\ $	Resultant load for the masonry in compres	ssion	
Resultant load for the FRCM in tension $F'_{f} = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f}$ (7.1.3b3) $F'_{f} = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode $Check = \left\ \begin{array}{c} \text{Failure Mode I if } F'_{m} - F'_{f} < N_{Ed} \\ \text{Failure Mode II otherwise} \end{array} \right\ $	Resultant load for the mason y in compres		
$F_{f}' = w_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f} $ (7.1.3b3) $F_{f}' = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^{2} = 69.4 \text{ kN}$ Check failure mode Check = $\begin{bmatrix} \text{Failure Mode I if } F_{m}' - F_{f}' < N_{Ed} \\ \text{Failure Mode II otherwise} \end{bmatrix}$	$F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot L$	(7.1.3b2)	$F_{m'} = 0.85 \cdot 0.0018 \text{ kN/mm}^2 \cdot 106 \text{ mm} \cdot 2500 \text{ mm} = 324 \text{ kN}$
Check failure mode $Check = \begin{cases} Failure Mode I & \text{if } F'_m - F'_f < N_{Ed} \\ Failure Mode II & \text{otherwise} \end{cases}$	Resultant load for the FRCM in tension		
Check = $\begin{vmatrix} \text{Failure Mode I if } F'_m - F'_f < N_{Ed} \\ \text{Failure Mode II otherwise} \end{vmatrix}$	$F_f' = w_f \cdot t_f \cdot \varepsilon_{fd} \cdot E_f$	(7.1.3b3)	$F_f = 2500 \text{ mm} \cdot 0.03 \text{ mm} \cdot 0.009741 \cdot 95 \text{ kN/mm}^2 = 69.4 \text{ kN}$
Failure Mode II otherwise			Check failure mode
Failure Mode II otherwise			Eailure Mode I if $F' - F' < N_{-1}$
			$Check = \ Failure Mode II otherwise$
Check = Failure Mode II (FRCM failure)			
			Check = Failure Mode II (FRCM failure)

aci

Calculate the design flexural strength.	
In accordance with Section 7.1.2, the effective tensile strain level ε_{fe} in the FRCM reinforcement attained at failure can be set equal to the FRCM design tensile strain ε_{fd} .	$\varepsilon_{fe} = \varepsilon_{fd} = 0.00974$
The effective stress level f_{fe} in the FRCM reinforce- ment attained at failure can be calculated as follows:	
$f_{fe} = E_f \cdot \epsilon_{fe}$	$f_{fe} = 95,000 \text{ MPa} \cdot 0.009741 = 925.39 \text{ MPa}$
The neural axis depth c_u can be therefore calculated by solving Eq. (7.1.3b5), as:	
$c_{u} = \frac{t_{f} \cdot w_{f} \cdot f_{fe} + N_{Ed}}{\gamma \cdot f_{mu} \cdot \beta \cdot L}$	$c_u = \frac{(0.03 \mathrm{mm} \cdot 2500 \mathrm{mm} \cdot 925.39 \mathrm{MPa} = 85,000 \mathrm{N})}{0.85 \cdot 1.8 \mathrm{MPa} \cdot 0.8 \cdot 2500 \mathrm{mm}} = 50.5 \mathrm{mm}$
The resultant loads for the masonry in compression F_m and for the FRCM in tension F_{f_j} and the nominal flexural strength M_n can be evaluated as follows:	
$F_m = c_u \cdot \gamma \cdot f_{mu} \cdot \beta \cdot L$	$F_m = 0.0505 \text{ m} \cdot 0.85 \cdot 1800 \text{ kN/m}^2 \cdot 0.8 \cdot 2.5 \text{ m} = 154.5 \text{ kN}$
$F_f = f_{fe} \cdot t_f \cdot w_f$	$F_f = 925,390 \text{ kN/m}^2 \cdot 0.00003 \text{ m} \cdot 2.5 \text{ m} = 69.4 \text{ kN}$
$M_n = F_m \cdot \left(\frac{t}{2} - \frac{\beta}{2}c_u\right) + F_f \cdot \frac{t}{2} $ (7.1.3.b6)	$M_n = 154.5 \text{ kN} \cdot \left(\frac{0.4}{2} \text{ m} - \frac{0.8}{2} \cdot 0.0505 \text{ m}\right) + 69.4 \text{ kN} \cdot \frac{0.4}{2} \text{ m}$
	$M_n = 41.66 \text{ kN} \cdot \text{m} (30,712 \text{ lbf} \cdot \text{ft})$
The design value of the flexural strength, according to Eq. (7.1.3.b7), is	
$M_{Rd} = M_{nURM} + \gamma_k \cdot (M_n - M_{nURM})$	$M_{Rd} = 16.05 \text{ kN} \cdot \text{m} + 0.5 \cdot (41.66 \text{ kN} \cdot \text{m} - 16.05 \text{ kN} \cdot \text{m})$ $M_{Rd} = 28.86 \text{ kN} \cdot \text{m} (21,271 \text{ lbf} \cdot \text{ft})$
	Check flexural strength
	Check FS = $\begin{vmatrix} \mathbf{OK} & \text{if } M_{Rd} \ge M_{Ed} \\ \mathbf{N.G.} & \text{otherwise} \end{vmatrix}$
Varify that the communicative strain in the mesoner.	Check $FS = OK$
Verify that the compressive strain in the masonry does not exceed ε_{mu}	Check strain = $\begin{vmatrix} \mathbf{OK} & \text{if } \varepsilon_{fd} \cdot \left(\frac{c_u}{t - c_u}\right) \le \varepsilon_{mu} \\ \mathbf{N.G.} & \text{otherwise} \end{vmatrix}$
	\mathbf{N} . \mathbf{G} . otherwise Check strain = $\mathbf{O}\mathbf{K}$

This is a preview. Click here to purchase the full publication.

aci

12.2.1 Strengthening of masonry crowning-beams with FRCM/SRG systems (ACI approach)—The following example explains how to calculate the tensile strength, the design resistant bending moment, and the flexural stiffness of a FRCM/SRG reinforced masonry crowning-beam subjected to bending load acting both parallel and perpendicular to the mortar bed joints.

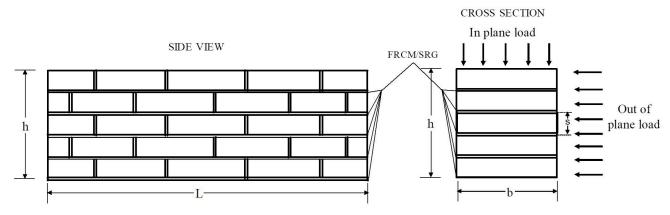


Fig. 12.2.1—FRCM/SRG reinforced masonry crowning-beam: geometrical properties and load patterns.

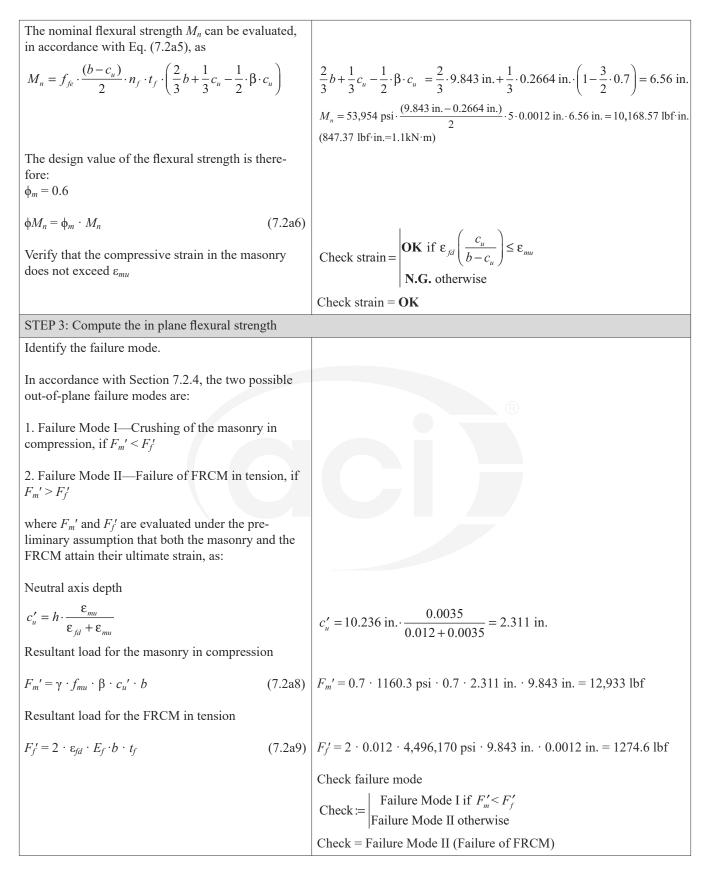
Masonry crowning beam geometrical and mechanical properties		
Height of the crowning beam:	<i>h</i> = 10.24 in. (260 mm)	
Width of the crowning beam:	b = 9.843 in. (250 mm)	
Masonry compressive strength:	$f_{mu} = 1160.3 \text{ psi} (8 \text{ MPa})$	
Compressive ultimate strain:	$\varepsilon_{mu} = 0.0035$	
Masonry elastic modulus:	$E_m = 290.08 \text{ ksi} (2000 \text{ MPa})$	
Stress-block parameters (in case of FR	CM failure):	
Masonry strength parameter:	$\gamma = 0.7$	
Neutral axis depth parameter:	$\beta = 0.7$	

FRCM system properties

The selected FRCM system consists of an aramid-glass (AG) fiber within a lime mortar layer. The AG textile is made of alkali-resistant glass fibers in weft direction (spacing 0.71 in.), and glass and aramid fibers in warp direction (spacing 0.59 in.).

Ultimate tensile strain of the fabric:	$\varepsilon_{fiu} = 0.0267$
Stiffness:	$E_f = 4496.17$ ksi (31 GPa)
Design tensile strain:	$\varepsilon_{fd} = \min(\varepsilon_{fu}, 0.012) = 0.012$
Design thickness of composite strips:	$t_f = 0.0012$ in. (0.03 mm)
Number of FRCM plies:	$n_f = 5$
Spacing between FRCM layers:	s = 2.047 in. (52 mm)
Width of the FRCM strip.	$w_f = b = 9.84$ in. (250 mm)

PROCEDURE	CALCULATION IN inlb
STEP 1: Compute the tensile strength	
Compute the tensile strength N_n , according to Eq. (7.2a17).	
$N_n = b \cdot n_f \cdot t_f \cdot \varepsilon_{fd} \cdot E_f$	$N_n = 9.843$ in. $5 \cdot 0.0021$ in. $0.012 \cdot 4,496,170$ psi = 3186 lbf (14.2 kN)
The design tensile strength of the crowning-beam N_{Rd} is therefore calculated as follows:	
Reduction factor $\phi_m = 0.6$	
$\phi N_n = \phi_m \cdot N_n \tag{7.2a18}$	$\phi N_n = 0.6 \cdot 3186 \text{ lbf} = 1912 \text{ lbf} (8.5 \text{ kN})$


This is a preview. Click here to purchase the full publication.

aci

STEP 2: Compute the out of plane flexural strength	
Identify the failure mode.	
In accordance with Section 7.2.3, the two possible out-of-plane failure modes are:	
1. Failure Mode I—Crushing of the masonry in compression, if $F_m' < F_f'$ 2. Failure Mode II—Failure of FRCM in tension, if $F_m' > F_f'$	
where F_m' and F_f' are evaluated under the preliminary assumption that both the masonry and the FRCM attain their ultimate strain, as:	
Neutral axis depth	
-	$c'_{u} = 9.843 \text{ in.} \cdot \frac{0.0035}{0.012 + 0.0035} = 2.223 \text{ in.}$
Resultant load for the masonry in compression	
$F_{m}' = \gamma \cdot f_{mu} \cdot \beta \cdot c_{u}' \cdot h \tag{7.2a2}$	$F_m' = 0.7 \cdot 1160.3 \text{ psi} \cdot 0.7 \cdot 2.223 \text{ in.} \cdot 10.236 \text{ in.} = 12,937 \text{ lbf}$
Resultant load for the FRCM in tension	
$F'_{f} \coloneqq \frac{1}{2} n_{f} \cdot t_{f} \cdot \varepsilon_{fd} \cdot E_{f} \cdot (b - c'_{u}) $ (7.2a3)	$F'_{f} := \frac{1}{2} \cdot 5 \cdot 0.0012 \text{ in.} \cdot 0.012 \cdot 4,496,170 \text{ psi} \cdot (9.843 \text{ in.} - 2.223 \text{ in.}) = 1233.9 \text{ lbf}$
	Check failure mode Check = $\begin{vmatrix} Failure & Mode I & if F'_m < F'_f \\ Failure & Mode II & otherwise \end{vmatrix}$
Calculate the design flexural strength.	Check = Failure Mode II (FRCM failure)
In accordance with Section 7.2.3, the effective tensile strain level ε_{fe} in the FRCM reinforcement attained <i>t</i> failure can be set equal to the FRCM design tensile strain ε_{fd} .	$\varepsilon_{fe} = \varepsilon_{fd} = 0.0120$
The effective stress level f_{fe} in the FRCM reinforcement attained at failure can be calculated as follows:	
$f_{fe} = E_f \cdot \varepsilon_{fe}$	$f_{fe} = 4,496,170 \text{ psi} \cdot 0.012 = 53,954 \text{ psi}$
The neural axis depth c_u can be therefore calculated by solving Eq. (7.2a4), as:	
$c_{u} = \frac{\left(\frac{1}{2}f_{fe}\cdot b\cdot n_{f}\cdot t_{f}\right)}{\gamma\cdot f_{mu}\cdot\beta\cdot h + \frac{1}{2}\cdot f_{fe}\cdot n_{f}\cdot t_{f}}$	$c_{u.} := \frac{\frac{1}{2} \cdot 53,954 \text{ psi} \cdot 9.843 \text{ in.} \cdot 5 \cdot 0.0012 \text{ in.}}{0.7 \cdot 1160.3 \text{ psi} \cdot 0.7 \cdot 10.236 \text{ in.} + \frac{1}{2} 53,954 \text{ psi} \cdot 5 \cdot 0.0012 \text{ in.}} = 0.2664 \text{ in.}$
	<u>۲</u>

aci

aci

Calculate the design flexural strength.	
In accordance with Section 7.2.4, the effective tensile strain level ε_{fe} in the FRCM reinforcement attained at failure can be set equal to the FRCM design tensile strain ε_{fd} .	$\varepsilon_{fe} = \varepsilon_{fd} = 0.012$
The effective stress level f_{fe} in the FRCM reinforcement attained at failure is the same of that computed in Step 2.	$f_{fe} = 53,954 \text{ psi}$
The neural axis depth c_u can be therefore calculated by solving Eq. (7.2.a10), as:	
$A = \gamma \cdot f_{mu} \cdot \beta \cdot b$	A = 5596 lbf/in.
$B = 2t_f \cdot b \cdot \varepsilon_{fe} \cdot E_f + b \cdot \beta \cdot \gamma \cdot f_{mu} \cdot h$	B = 58,580 lbf
$C = E_f \cdot \varepsilon_{fe} \cdot b \cdot t_f \cdot (2 \cdot h - s)$	C = 11,747 lbf in.
$cl := \frac{B + (B^2 - 4 \cdot A \cdot C)^{0.5}}{2A}$	
$c2 = \frac{B - (B^2 - 4 \cdot A \cdot C)^{0.5}}{2A}$	®
The real value of neutral axis depth is therefore: $c_{u} \coloneqq \begin{vmatrix} c1 & \text{if } (c1 \le h) \land (c1 > 0) \\ c2 & \text{otherwise} \end{vmatrix}$	$c_u = 0.205$ in.
The nominal flexural strength M_n can be evaluated, in accordance with Eq. (7.2a11), as:	
d = $\frac{(h - c_u)^2 + (h - c_u - s)^2}{2 \cdot h - 2c_u - s}$	$d = \frac{(10.236 \text{ in.} - 0.205 \text{ in.})^2 + (10.236 \text{ in.} - 2.05 \text{ in.} - 2.05 \text{ in.})^2}{2 \cdot 10.236 \text{ in.} - 2 \cdot 0.205 \text{ in.} - 2.05 \text{ in.}} = 9.123 \text{ in.}$
$d1 = c_u \cdot (1 - 0.5 \cdot \beta) + d$	d1 = 0.205 in. $(1 - 0.5 \cdot 0.7) + 9.123$ in. = 9.256 in.
$M_n = b \cdot t_f \cdot \varepsilon_{fe} \cdot \left(1 + \frac{h - c_u - s}{h - c_u}\right) \cdot d1$	$1 + \frac{h - c_u - s}{h - c_u} = 1 + \frac{10.236 \text{ in.} - 0.205 \text{ in.} - 2.05 \text{ in.}}{10.236 \text{ in.} - 0.205 \text{ in.}} = 1.80$
	$M_n = 9.843$ in. $\cdot 0.0012$ in. $\cdot 0.012 \cdot 4,496,170$ psi $\cdot 1.8 \cdot 9.123$ in. $= =10,465.09$ lbf \cdot in.
The design value of the flexural strength is there- fore:	
$\phi M_n = \phi_m \cdot M_n \tag{7.2a12}$	$\phi M_n = 0.6 \cdot 872.09 \text{ lbf} \cdot \text{ft} = 523.25 \text{ lbf} \cdot \text{ft} (0.71 \text{ kN} \cdot \text{m})$
Verify that the compressive strain in the masonry does not exceed ε_{mu}	Check strain = $\begin{vmatrix} \mathbf{OK} & \text{if } \varepsilon_{fd} \cdot \left(\frac{c_u}{h - c_u}\right) \le \varepsilon_{mu} \\ \mathbf{N.G.} & \text{otherwise} \end{vmatrix}$
	Check strain = OK

aci

STEP 4: Compute the out of plane flexural stiffness	
Compute the neutral axis depth of the homogenized cross section in accordance with Eq. (7.2a13)	
$A1 = \frac{h}{2} - \frac{3}{4} \frac{E_f}{E_m} \cdot n_f \cdot t_f$	A1 = 5.05 in.
$B1 = \frac{E_f}{E_m} \cdot n_f \cdot t_f \cdot b$	$B1 = 0.92 \text{ in.}^2$
$C1 = \frac{E_f}{E_m} \cdot n_f \cdot t_f \cdot b^2$	$C1 = 9.01 \text{ in.}^3$
$cl := \frac{-Bl + (Bl^2 + Al \cdot Cl)^{0.5}}{2 \cdot Al}$	
$c2 := \frac{-B1 - (B1^2 + A1 \cdot C1)^{0.5}}{2 \cdot A1}$	
The real value of neutral axis depth is therefore:	
$c_u = \max(c1, c2)$	$c_u = 0.58$ in.
The moment of inertia can be obtained, in accor- dance with Eq. (7.2.a14), as $I = h \cdot \frac{c_u^3}{3} + \frac{E_f}{E_m} \cdot n_f \cdot t_f \cdot \frac{(b - c_u^3)}{3}$	R $I = 10.236 \text{ in.} \cdot \frac{(0.58 \text{ in.})^3}{3} + \frac{4496.17 \text{ ksi}}{290.08 \text{ ksi}} \cdot 5 \cdot 0.0012 \text{ in.} \cdot \frac{(9.26 \text{ in.})^3}{3} = 25.28 \text{ in.}^4 (1.1 \times 10^7 \text{ mm}^4)$ $(1.1 \times 10^7 \text{ mm}^4)$

STEP 5: Compute the in plane flexural stiffness	
Compute the neutral axis depth of the homogenized cross section in accordance with Eq. (7.2a15)	
$A2 = b \cdot \frac{E_f}{E_m} \cdot b \cdot t_f$	$A2 = 1.80 \text{ in.}^3$
$B2 = \frac{E_f}{E_m} \cdot t_f \cdot b$	$B2 = 0.18 \text{ in.}^2$
$C2 = h - \frac{s}{2}$	C2 = 9.21 in.
$c_{ip1} = \frac{-(B2) + \left[(B2)^2 + A2 \cdot (C2) \right]^{0.5}}{\frac{b}{2}}$	
$c_{ip2} = \frac{-(B2) - \left[(B2)^2 + A2 \cdot (C2)\right]^{0.5}}{\frac{b}{2}}$	
The real value of neutral axis depth is therefore:	R
$c_u = \max(c_{ip1}, c_{ip2})$	$c_u = 0.79$ in.
The moment of inertia can be obtained, in accordance with Eq. (7.2.a16), as follows:	
$I = b \cdot \frac{c_u^{3}}{3} + \frac{E_f}{E_m} \cdot b \cdot t_f \cdot \left[(h - c_u)^2 + (h - c_u - s)^2 \right]$	$I = 9.843 \text{ in.} \cdot \frac{(0.79 \text{ in.})^3}{3} + \frac{4496.17 \text{ ksi}}{290.08 \text{ ksi}} \cdot (9.843 \text{ in.}) \cdot 0.0012 \text{ in.} \cdot 143.9 \text{ in.}^2 =$
	27.9 in. ⁴ $(1.2 \times 10^7 \text{ mm}^4)$

