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Annex A 
(informative) 

 
Calculation of rail break gap 

A.1 Rail break gap for track with conventional fastenings (not on a bridge) 

For general track conditions if there is a break in a continuous welded rail which is loaded in tension, the 

width, wgap, of the gap which will open up may be calculated as follows: 

 

Key 

LR  longitudinal restraint (kN per metre length of track) 

LT  transfer length (m) 

Figure A.1 — Schematic diagram of displacements in a broken rail 

Strain in a continuous welded rail due to a temperature change ∆T : 

( )ε α=
T

Δ Δ  T T  

Force in a continuous welded rail due to a temperature change ∆T : 

( ) α=
T rail rail

Δ Δ    N T T A E  

Load transfer length in case of gap: 

=
T

ΔN T
L

LR

( )
  

Using these equations and integrating over the length, LT, and assuming a linear relationship, the gap 

width for continuous welded rail (CWR) is given by: 

( )α ⋅
=

2

T
Δ 2

,

    
rail rail

gap CWR

T A E
w

LR
 

In order to comply with the requirements of the EN 13481 series of standards LR shall be at least 7 kN 

per rail fastening assembly for conventional lines and 9 kN per rail fastening assembly for high speed 

lines, i.e. if the limiting case is for slip to occur between the rail and sleeper or support then for a sleeper 

or support spacing of 650 mm and with 2 rails, LR shall be at least 21,6 kN per metre of  track for 

conventional lines and at least 27,6 kN per metre of track for high speed lines. 
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A.2 Rail break gap for track on a bridge, with conventional fastenings 

For conventional CWR on a bridge, the calculation shall be undertaken considering the interaction effects 

between the bridge and the rail. A computer simulation based on a model according to EN 1991-2:2003, 

6.5.4.4 may be used. However, if the track configuration is of a design used elsewhere in the railway 

network, it is unlikely that unacceptable rail break gaps will open up on bridges except in two specific 

cases: 

— sliding fastenings are used to reduce rail stresses due to track-bridge interaction effects; 

— the normal rail stress limits have been exceeded and the track engineer and certification authority 

have given a derogation permitting those limits to be increased on the bridge. 

In either of these cases a special calculation is required to ensure that permitted rail break gaps are not 

exceeded. 

If the rail break occurs in CWR on a bridge, the total width of the rail break gap is the result of the gap 

given by the thermal expansion of the restrained rail and of the displacements and expansion of the 

bridge. Since the system is nonlinear, the effects have to be calculated and superposed nonlinearly. 

In principle rail breaks are detected quickly and the effect of frequently applied braking forces does not 

need to be take into account. Since rail breaks are more likely to occur in winter under high tension 

stresses, the calculation should be done for the following load cases: • maximum negative bridge temperature variation ΔTB (minimum bridge temperature) 

generally ΔTB = −30 K • maximum negative rail temperature variation ΔTR (minimum rail temperature) 

generally ΔTR = −50 K 

For the calculation it can be assumed, that the characteristics of the unloaded track are considered and 

that both rails of a track break together (conservative assumption). On bridges with more than one track, 

the break only has to be considered in one track. 

Breaks are most likely to occur at the position where the theoretical maximum tension stresses occur 

(generally over bridge joint). 

The nonlinear characteristics of the longitudinal resistance of the track have to be considered. 

The following steps have to be undertaken for the decisive point of the rail on the bridge: 

1) Load case ΔTB and ΔTR ↓ nonlinear calculation 

2) Modelling of the rail break ↓ nonlinear calculation 

3) Evaluation of the gap width 

An example of the calculation procedure is presented in the following (for the selected static system see 

also the case studies in Annex C): 
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a) rail break on bridge 

 

b) Rail break on embankment (comparison) 

 
Key 

1 rail break 

2 state after = − = −
Bridge Rail

Δ 30 K and Δ 50 K    T T  

3 
Rail substructure/U  

4 state after rail break 

5 
Rail substructure/U  

6 rail break gap 70,48 mm 

7 state after = −
Rail

Δ 50 K and rail break   T  

8 
Rail substructure/U  

9 rail break gap 59,51 mm 

10 Remark: free thermal expansion of the bridge: 

 =
T

100 m L  

 α −= ×th 51 2 10 1 K,   /  

 = −
Bridge

Δ 30 K T  

 =
T

Δ 36 mm L  

Figure A.2 — Rail break on a single span bridge 
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As can be seen in Figure A.2, the rail break gap occurring at axis 20 of the bridge (70,48 mm) is 

significantly dependent on the interaction effects between the rail and bridge. A nonlinear calculation 

should be performed in order to obtain realistic values for the rail break gap. 

A.3 Rail break gap for track with sliding (ZLR) fastenings 

If there is a rail break within a length of track, LS, for which LR is zero (i.e. a length of track with “mobile 

rail” or ZLR fastenings) the restrained rail at either side of that length will pull back by the amount 

calculated in A.1 above, but there will be an additional gap width, wgap,ZLR, given by the thermal expansion 

properties of the unrestrained length which is given by 

wgap = wgap,CWR + wgap,ZLR 

A.4 Limiting values of rail break gap 

The maximum permitted value of wgap may be specified by the Infrastructure Manager or the individual 

project specification. In the absence of any other information, for conventional railways it is 

recommended that a value of wgap = 90 mm should be used. This value is based on the German 

specification DB Ril 820.2040, 2(4). 

Similarly, for light rail systems it is recommended that a value of wgap = 75 mm should be used. This value 

is based on the value given in a number of individual project specifications issued by US based 

engineering consultants in recent years. 
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Annex B 
(informative) 

 
Algebraic studies of longitudinal track characteristics 

B.1 Algebraic representations of behaviour 

B.1.1 Sliding action 

Fundamental to the longitudinal interaction between the track and the bridge is the sliding action that 

can occur between the rail and the structure. Elastic-plastic sliding mechanisms are not often met within 

structural mechanics, so the procedures for evaluating their effects are unfamiliar. The resulting 

structural behaviour is also unfamiliar. A section on this topic is included here (B.1.1 to B.1.7) because 

there are no text books or published papers that set out the basic behaviour that needs to be understood 

when designing a bridge to support a railway. Fryba addresses the topic at some length [Fryba, L. 

Dynamics of Railway Bridges. Thomas Telford Ltd., London 1996] but he only addresses the case of an 

elastic k-function.  Models based on values of the track resistance to sliding k within the elastic range do 

not reflect what happens in practice, where relatively small deflections are needed to initiate the onset of 

plastic behaviour. 

In this section a number of concepts are identified, and given names and which are shown in italics, such 

as k-function. Different calculation methods are discussed. The analytical studies undertaken result in 

algebraic expressions for the parameters which are needed to apply this standard. These expressions 

give insights into the interaction behaviour, and it is shown how some of them are used in two 

spreadsheets (see B.2) which derive all the parameters needed for the checks. 

The behaviour and analysis methods described relate to the case with continuous rails, with no rail joints. 

Bridges may have one or two spans between abutments, or they may be very long viaducts which are 

broken down into a succession of decks, separated by structure joints. Each deck may be subdivided into 

two, three or four spans, but its structure is continuous over the full length of the deck. It is always 

assumed that there is a structure joint between an abutment and a deck. Even if the deck is fixed to the 

abutment, the abutment has some flexibility, and this flexibility has a significant effect on the behaviour. 

It is assumed that the top of the embankments which lead up to the abutments at both ends are fixed 

longitudinally. In reality there will be some flexibility within the body of the embankments, but it has 

little effect on the parameters being calculated. 

It is longitudinal actions that are discussed and analysed. This results in values for the Additional Stress, 

and for the longitudinal force onto the substructure. These are the parameters which need to be checked. 

There are four actions which contribute to these parameters: change in temperature of the deck, end-

rotations of the decks due to Temperature Difference, end-rotations due to vertical train loads, and 

longitudinal sway due to braking and traction forces. The stresses and movements depend on the 

sequence in which the loads are applied and move. Current practice uses the LM71 load model (see 6.3.2 

of EN 1991-2:2003) to model the effect of the train, with the load positioned on the bridge where it gives 

the most severe effects (see 6.8.1 in EN 1991-2:2003). As explained in 10.2.5, LM71 cannot be used to 

model the moving train using step-by-step behaviour adjusting the position of LM71, so simplifying 

assumptions are made. In these studies it is assumed that a seasonal temperature change occurs first, 

followed by Temperature Difference, and then the train load and the braking and traction effects occur 

simultaneously. It is shown that the Temperature Difference effect can be combined with the effect of the 

seasonal temperature change, so there are two loading stages, and two analysis stages that relate to them. 

There is also a combined analysis stage, in which all the effects are combined. 
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B.1.2 The k-function 

In UIC774-3R and EN 1991-2:2003 an elastic-plastic model is used to describe the k-function. This has 

been maintained in the recommended amendments to EN 1991-2 in Annex E of this report. The 

parameters k and u0 are used to define this simplified function, as outlined in 5.2.2 above. In order to have 

a better insight into track-bridge interaction behaviour it is worth considering models in which the 

structure may be represented in more detail but in which the k-function is simplified even further. In this 

section  k is used as a generic term for the force transfer between track and deck or subgrade. kT is defined 

as the plastic value of k for the temperature case.  A derived parameter F1 is used for the elastic flexibility 

of the system, where F1 = u0/kT. In the case of ballasted track some of the flexibility is in the ballast and 

some in the fastening. F, the generic symbol for either F1 or F2, can be expressed as FB + FF, where FB and 

FF are the flexibility of the ballast and the fastening. 

The fully-plastic model of the k-function is a simplification which assumes that u > u0 at all locations on 

the bridge. This is a good approximation for long multi-span bridges with low values of u0 e.g. long bridges 

with ballastless track with quite stiff fastening systems. Use of this further simplification enables 

algebraic expressions to be derived. The expressions give insights into the behaviour but it is not intended 

that they should be used except for approximate evaluations of parameters. The gap model is also used 

because it can simplify calculations with little loss of accuracy. All three functions are shown in Figure B.1. 

When the track over the joint is loaded, or the ballast is frozen, the load - displacement parameters of the 

track change. Figure B.1 shows the elastic-plastic model before and after a change at Point B. 

Temperature change takes it from A to B. kT and FT then change to kE and FE. In this analysis, u0 is only 

used to describe the case under the first stage of loading (temperature). u0,E the value of u0 to be used in 

the analysis for the second stage of loading (braking and traction and vertical train loading), is sometimes 

specified but it is not used directly. After k changes value, or a change in the direction of movement, the 

change in u which initiates slip is described as F2 × k’, where k’, the effective k, is the change in the plateau 

value of k. If the next movement is in the same direction as the temperature change, then k’ = kE − kT and 

the k-function progresses from B to C. If it is the opposite direction k’ = kE + kT and it progresses from B 

to D. After C or D it will follow one of the arrows depending on whether the next movement is in the same 

direction as the previous movement, or the opposite direction. The first stage of loading may cease before 

u reaches u0,T. In this case the point B lies on the elastic part of the diagram. If the second movement is in 

the same direction as the first, k’ = kE − k1, where k1 is the value of k after the first stage. If it is in the 

opposite direction k’ = −kE − k1. In both cases u0,E = k’ × FE. 
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a) Elastic plastic model 

 

b) Fully plastic model 

 

c) Gap model 

Figure B.1 —   k-functions 

In the case of the loaded track it is not clear how the enhanced k value is sustained under a moving train. 

A fastening can carry a large shear force when an axle is above it, but when the axle moves away its shear 

capacity reverts to the shear capacity of the unloaded track. In the case of a loaded track two calculations 

are recommended, firstly using kT and secondly using kE.  It is likely that kE governs peak rail stresses and 

kT governs the sway and anchor force. 

The elastic-plastic behaviour of the k-function is inherently nonlinear, so the effects of different actions 

cannot be added directly without, possibly, introducing significant conservatism in the resulting designs. 

The spreadsheets use iterative methods which allow the effects to be combined correctly. 

B.1.3 Temperature change 

B.1.3.1 General 

The Additional Stress is the additional axial stress in the rail in the vicinity of a bridge compared with the 

coexisting axial stress in the rail away from the bridge. If there is no joint in the rail, the temperature 

stresses due to changes in the temperature of the rail are the same near the bridge and away from the 

bridge. It follows that changes in the temperature of the rail do not contribute to the Additional Stress. 

However changes in the temperature of the bridge cause movements in the structure joints between 

decks which, in turn, mobilize k-forces in the track and generate Additional Stress in the rail. 
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B.1.3.2 Algebraic studies under changing seasonal temperatures 

Algebraic expressions are derived below for several parameters. Each time an expression is derived it is 

evaluated using the following typical values: 

E   = 205 000 MPa 

A  = 2 × 60/7 850  = 0,015 3 m2 

kT   = 0,020 MN/m 

kE   = 0,060 MN/m 

u0   = 0,002 5 m 

LJ   = 90 m α   = 12e-6 

T   = 35K 

K   = 300 MN/m 

Study 1.  A repeating deck within a long viaduct. 

Using the fully-plastic model. 

A typical, repeating deck lies within a long length of identical decks, all anchored longitudinally at their 

midpoint. This case can be used to explore the minimum costs needed for a long, repetitive viaduct. The 

fully-plastic k-function is used to derive simple expressions. Figure B.2 shows plots of the longitudinal 

track forces and the longitudinal displacements of both the track and the deck under an annual 

temperature change. Note that the force diagram necessarily subtends equal areas above and below the 

axis because there can be no net expansion or contraction of the rail. The direction of slip changes at every 

deck joint, and every midpoint. Where the direction changes the plot of the rail displacement changes 

from convex to concave. 

In a region of slip (i.e. where u > u0) dN/dx = kT. Longitudinal strain dv/dx = N/EA, so N = EA dv/dx, kT = EA 

d2v/dx2,  d2v/dx2 = k”, where k” = kT/EA. If dv/dx = 0 at x = 0, then v = k”x2/2. This shows that each length 

of the rail displacement diagram is a parabola with a constant curvature of k”, so the radius of curvature 

R = 1/k”. The gradient of the diagram is the axial strain in the rail. The absolute maximum temperature 

stress, which occurs both at the deck joints and at the mid-point, M, of the deck = kTL/4A = 29,4 MPa. 

There appears to be an immediate paradox. The stress due to the temperature change is predicted to be 

independent of the magnitude of the temperature change. This can be explained. Under small 

temperature changes slip is limited to regions close to the deck joints. The displacement plot for this case 

is shown in Figure B.3. Over the middle length, CC, of the deck the rail displacement diagram is captured 

by the deck displacement diagram. As the temperature change increases the curved sections of the 

displacement plot extend until they meet, when slip is fully developed – i.e u > u0 at every rail fastening 

position - and the temperature change TT = kTL/4EAα = 12,0 °C. This is called the Tangent temperature 

change because the deck displacement plot is tangential to the rail displacement plot at the midpoint. As 

T increases further the gradient of the deck plot increases but the rail plot and rail stress is unchanged. 
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Key 

1 track force 

2 displacement 

3 rail 

4 deck 

5 deck joint 

6 anchor pier 

Figure B.2 — Plots of track force and displacement for a repeating deck 
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Key 

1 deck 

2 joint 

3 rail 

Figure B.3 — Plot of track displacement with partial slip 

Using the gap model. 

The gap model gives a good approximation of the elastic-plastic behaviour. It requires the solution of a 

cubic equation, which is solved with a formula. It gives accurate results over a wide range of parameters. 

Figure B.4 shows the displacement plots over half the length of the deck. γ is the gradient of the rail plot 

within the gap. β is the negative gradient of the rail plot at the end of the deck. The difference between 

the two plots is u0/2 at (u0/2)/(αT— γ) from M. Two formulae, (B.1) and (B.2), can be derived from 

Figure B.4. 
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