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Chapter 7 
Horizontally Curved Members

7.1  INTRODUCTION

This chapter discusses the strength and behavior of beams 

loaded perpendicular to the plane of curvature as shown in 

Figure 7-1. Horizontally curved beams must resist both �ex-

ural and torsional moments and are subject to the same limit 

states as straight beams. In most cases, torsional rotations 

lead to a design controlled by serviceability considerations. 

7.2  BEHAVIOR

The de�ected shape of a horizontally curved beam is char-

acterized by vertical and horizontal translation, and torsional 

rotation of the cross section. Second-order effects and poten-

tial yielding of the beam cause nonlinear deformations until 

failure occurs by excessive deformations and/or yielding of 

the member. Due to their high torsional stiffness, closed sec-

tions provide ef�cient resistance to these deformations.

The behavior of curved beams is dependent on the span 

angle, θs, in Figure 7-1. Beams with span angles less than 

1° are dominated by �exure, acting as a nominally straight 

beam with an initial geometric imperfection. For beams with 

span angles between 1° and 20°, both bending and torsion 

have a signi�cant in�uence on the behavior. When the span 

angle is greater than 20°, the behavior is affected primarily 

by torsion (Pi et al., 2000).

Because torsional deformations dominate the behavior of 

beams with span angles greater than 20°, ef�cient framing 

systems typically utilize in�ll members to provide torsional 

restraint. Where the curved member is continuous across tor-

sional supports, as shown in Figure  7-2, warping restraint 

increases the torsional ef�ciency. Analogous to the �exural 

behavior of a continuous beam, warping restraint is provided 

by equal and opposite warping moments in the adjacent 

span. The total resisting moment at the end of the in�ll beam 

is the sum of the torsional loads at the end of each span, 

Me, shown in Figure 7-2(c). Connections between the curved 

member and the in�ll beams are discussed in Section 7.9.

7.3  STRUCTURAL ANALYSIS

Several methods are available to calculate the required 

loads in a curved beam. The �nite element method is gen-

erally used for �nal design. Both the M/R method and the 

eccentric-load method are accurate enough for use in �nal 

design; however, they may be more appropriate for prelimi-

nary design in cases where complicated geometry and load-

ings are required. Also, these methods can provide valuable 

insight into the fundamental behavior of horizontally curved 

beams.

The required loads can also be calculated using equations 

published by Lebet and Hirt (2013), Young and Budynas 

(2002) and Nakai and Yoo (1988); however, the equations 

are cumbersome for design of�ce use, and they are available 

only for a limited number of idealized cases. For the simplest 

case shown in Figure 7-2(a), where the beam is subjected to 

equal and opposite �exural moments, Mx, at the ends of the 

unbraced segment, the �exural moment is (Pi et al., 2000):

Fig. 7-1. Horizontally curved beam.

https://www.civilenghub.com/AISC/124126441/AISC-833?src=spdf


76 / CURVED MEMBER DESIGN / AISC DESIGN GUIDE 33

 

M

M cos
2

cos
2

x

x
b

z

b

θ
θ

θθ =
−⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠  

(7-1)

where

θb = angle between torsional restraints, rad

θz =  angle from the end of the segment to the location of 

interest, rad

The torsional moment is:
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The maximum �exural moment, which occurs at the mid-

span, is:
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The maximum torsional moment, which occurs at the ends, 

is:
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In addition to shear and axial loads, helical members are 

subjected to biaxial �exure and torsion. Several solutions are 

available for calculating the loads in spiral stairs of various 

geometries (Bangash and Bangash, 1999; Abdul-Baki and 

Bartel, 1969; Bergman, 1956). However, the equations are 

cumbersome for design of�ce use and they are available only 

for a limited number of idealized cases. Because the solu-

tions were derived by modeling the treads and stringers as a 

(a) Uniform moment

      

 (b) Distributed torsion (c) Torsion diagram

      

 (d) Uniform radial load at top flange (e) Top flange moment diagram

Fig. 7-2. Curved beam continuous across torsional supports.
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single member, they are applicable to steel stairs only in spe-

cial cases. A �nite element model may be the best method to 

determine the required member loads. A conservative model 

can be obtained by neglecting the treads and modeling the 

stringers as independent spiral members. In many cases, this 

will be extremely conservative because the treads can pro-

vide signi�cant torsional restraint to the stringer. The level of 

torsional restraint provided by the treads is dependent on the 

tread type, arrangement and connection details.

7.3.1  Finite Element Models

Either a two- or three-dimensional �nite element model 

can be used to model the structural behavior of horizontally 

curved beams. As discussed in Section 6.6, curved mem-

bers are usually modeled with a series of straight elements. 

Although a three-dimensional model requires a greater engi-

neering effort, the accuracy may only be slightly better than 

a two-dimensional analysis with similar element sizes (Nev-

ling et al., 2006).

Two-Dimensional Finite Element Model

A two-dimensional segmented �nite element model, with 

several straight beam elements representing the curved 

member will usually provide the accuracy required for 

design purposes. The accuracy increases with the number of 

elements. Between 10 and 20 elements is adequate for mod-

eling most semi-circular members (King and Brown, 2001). 

For models with highly nonlinear behavior, a convergence 

study may be required to determine the appropriate number 

of elements.

Most commercial �nite element programs use the basic 

beam �nite element formulation, which does not have the 

capability to model the warping stiffness. In this case, only 

the St. Venant stiffness is utilized in the analysis, which 

causes an overestimate of the torsional deformations for 

most open cross sections. The accuracy can be improved by 

using equivalent torsion constants (Ahmed and Weisgerber, 

1996; White and Coletti, 2013). For members with warping 

�xed at both ends of the span, the equivalent torsion constant 

is:
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and where

Cw = warping constant, in.6

E  = modulus of elasticity, ksi

G  = shear modulus, ksi

Ldb =  developed length (arc length) along the curved 

member between torsional restraints, in.

For members with warping �xed at one end of the span 

and warping free at the other end, the equivalent torsion con-

stant is:
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Because torsion in closed cross sections is resisted primar-

ily by St. Venant torsion, accurate results can be expected for 

closed sections when the warping stiffness is neglected.

Three-Dimensional Finite Element Model

A three-dimensional �nite element model uses several ele-

ments to make up the cross section. The webs are typically 

modeled with plate elements, but can also be modeled with 

shell or solid elements. The �anges of I-shaped members 

are typically modeled with beam elements, but can also be 

modeled with plate, shell or solid elements (FHWA, 2015; 

AASHTO/NSBA, 2014; King and Brown, 2001). The warp-

ing stiffness is addressed properly in these models without 

the need for modi�ed torsion constants. 

In�ll members and cross frames that are rigidly connected 

to restrain torsion can be connected to nodes at the top and 

bottom �anges of the curved member. They can be mod-

eled with beam elements or with plate/shell/solid elements 

(FHWA, 2015; AASHTO/NSBA, 2014).

Any deck or slab can be modeled with plate, shell or solid 

elements. If plate or shell elements are used, the elements 

should be offset vertically above the top �ange of the curved 

member using linking elements. For example, a composite 

slab can be modeled with eight-node solid elements attached 

to the curved member top �ange with beam elements repre-

senting the shear headed stud anchors (FHWA, 2015).

If the �anges of the curved member are modeled with beam 

elements, the required stresses from the model can be com-

pared with the available stresses in the AISC Speci�cation 

(AISC, 2016c) and AISC Design Guide 9 Torsional Analy-

sis of Structural Steel Members (Seaburg and Carter, 1997). 

However, the available strengths in the AISC Speci�cation 

were not developed to be compared to the results from �nite 

element models built with plate, shell or solid elements. The 

ASD safety factors and LRFD resistance factors in the AISC 

Speci�cation were calibrated to provide a speci�c target reli-

ability when compared with required loads calculated using 

truss and beam elements in the structural analysis model, 

not plate, shell or solid elements. If the results of a model 

with plate, shell or solid elements are used with the AISC 

Speci�cation provisions, the required member loads should 

be determined by summing the element stresses over the 
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entire cross section. This will complicate the calculations 

and will likely produce similar results compared to a model 

with beam elements used for the �anges.

7.3.2  M/R Method

The M/R method (Tung and Fountain, 1970) has been used 

extensively in design where the curved beam is modeled 

as a straight member with a length equal to the developed 

span length, Lds = Rθs, where R is the radius and θs is the 

span angle in radians. The shear force, V, and the out-of-

plane �exural moment, Mx, are calculated as for a straight 

beam. Figure 7-3(a) shows the bending moment diagram for 

a horizontally curved, simply supported, uniformly loaded 

beam. The solid line shows the moment for the exact solu-

tion (Lebet and Hirt, 2013), and the dashed line shows the 

moment calculated using the straight beam approximation. 

The bending moment diagrams for a horizontally curved, 

simply supported beam with a midspan concentrated load is 

shown in Figure 7-4(a). In both cases, the developed mem-

ber length, Ld, is equal to the developed span length, Lds.

The torsional moment per unit length resulting from the 

beam curvature can be estimated with Equation  7-8. Tor-

sion diagrams can be constructed in a manner similar to the 

method used for shear and moment diagrams, where the 

change in torsional moment, Mz, between two points along 

the developed beam length is equal to the summation of mzc 

over the segment of interest. Because mzc accounts only for 

shear-center loads caused by the beam curvature, any addi-

tional torsional moments should be added algebraically to 

mzc.

 
m

M

R
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x
=

 
(7-8)

For the curved beam in Figure 7-2(a), mzc is shown in Fig-

ure 7-2(b) and the torsion diagram is shown in Figure 7-2(c). 

Because the torsion diagram is shown on a curved axis, 

the diagram is curved; however, the variation in torsional 

moment is linear along the member arc. The torsion dia-

grams for the bending moment diagrams in Figures 7-3(a) 

(a) Moment diagram

(b) Torsion diagram

Fig. 7-3. Moment and torsion diagrams for a horizontally curved, simply supported, uniformly loaded beam.
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and 7-4(a) are shown in Figures 7-3(b) and 7-4(b), respec-

tively. In both cases, torsional restraints are located only at 

the supports (Ld = Lds = Ldb).

The required shear calculated using the straight beam 

model is equal to the theoretical value; however, the �exural 

and torsional moments are under-predicted. When θs ≤ π/6 

(30°), the error for the simpli�ed method is less than 3%. For 

θs > π/6 (30°), the �exural and torsional moments can be cal-

culated using correction factors according to Equations 7-9 

and 7-10, respectively.

 Mxc = CMx (7-9)

 Mzc = CMz (7-10)

where

C 1
30 6.2

s
2

θ sθ
= − +

 
(7-11)

Idealized Cases

For several idealized cases, the M/R method can be used 

to develop equations for the torsional moment at any loca-

tion along the member. For all cases discussed, torsional 

restraints are located only at the supports (Ld = Lds = Ldb). 

For a horizontally curved, simply supported, uniformly 

loaded beam, the torsional moment represented by the dia-

gram in Figure 7-3(b) is:
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where

Ld = developed beam length, in.

w = uniform load, kip/in.

z = distance along the developed beam length, in.

The torsional moment is zero at the midspan and the max-

imum/minimum values at the ends are:

(a) Moment diagram

(b) Torsion diagram

Fig. 7-4. Moment and torsion diagrams for a horizontally curved, simply supported beam with a midspan concentrated load.
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For a horizontally curved, simply supported beam with 

a midspan concentrated load, the torsional moment repre-

sented by the diagram in Figure 7-4(b) is:
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where

P = concentrated load, kips

The torsional moment is zero at the midspan and the maxi-

mum/minimum values at the ends are:
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For a horizontally curved, �xed-end, uniformly loaded 

beam, the torsional moment is:
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The torsional moment is zero at the ends and midspan. The 

maximum/minimum values at z=0.211Ld and z=0.789Ld are:
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For a horizontally curved, �xed-end beam with a midspan 

concentrated load, the torsional moment is:
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The torsional moment is zero at the ends and midspan. The 

maximum/minimum values at z=Ld/4 and z=3Ld/4 are:
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7.3.3  Eccentric Load Method

A simple method to approximate the torsional loads on a 

horizontally curved beam is based on the horizontal eccen-

tricity from the load to a chord drawn between the supports 

(Heins and Firmage, 1979). For members that are loaded 

along their curved shear center axis, the equivalent eccen-

tricity is the distance perpendicular to the chord, from the 

chord to the centroid of the load. For uniformly distributed 

loads, the equivalent eccentricity is:
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And the uniformly distributed torsion is:

 mz = wew (7-21)

For midspan concentrated loads, the equivalent eccentric-

ity is:
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And the concentrated midspan torsion is:

 Mz = Pep (7-23)

The support moments are accurately predicted with the 

eccentric load method; however, the span moments are 

only approximate. Use of these approximate span moments 

results in a linear torsion diagram, which is advantageous in 

design because the required cases for these loading condi-

tions are available in AISC Design Guide 9, Appendix B.

7.4  FLEXURAL STRENGTH

The local buckling provisions in AISC Speci�cation Chapter 

B are applicable to horizontally curved beams without modi-

�cation. As discussed in Section 7.2, the behavior at ultimate 

strength is characterized by excessive vertical, horizontal 

and torsional deformations rather than a classical lateral-

torsional buckling failure. However, as with straight beams, 

the �exural strength of curved beams is reduced for mem-

bers that are susceptible to lateral-torsional buckling (Yoo 

et al., 1996; Nishida et al., 1978). Because closed sections 

have a high torsional rigidity, they are typically not subject 

to lateral-torsional buckling.

The effect of curvature on the lateral-torsional buckling 

strength is negligible when the angle between torsional 

restraints, θb, is equal to or less than π/8 (22.5°). In this 

case, AISC Speci�cation Chapter F is applicable. For dou-

bly symmetric I-shaped members with θb > π/8 (22.5°), the 

provisions of Chapter F can be used with a revised lateral-

torsional buckling modi�cation factor according to Equa-

tion  7-24 (adapted from Yoo et al., 1996). In the AISC 

Speci�cation equations, the developed length along the 

beam between torsional restraints, Ldb=Rθb, must be used in 

lieu of the straight-member unbraced length, Lb. 
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where 

Cbs =  lateral-torsional buckling modi�cation factor for an 

equivalent straight member

θb = angle between torsional restraints, rad

7.5  TORSIONAL STRENGTH

After the required torsional loading diagrams have been con-

structed using one of the structural analysis methods in Sec-

tion 7.3, the torsional strength can be determined with one of 

the methods in this section. Because both torsion and �exure 

are present in curved beams, the second-order effects and 

interaction equations in Section 7.6 are required to verify 

the member strength. In all cases, the torsional strength is 

calculated for an equivalent straight member, based on the 

developed length between torsional restraints, Ldb, and prop-

erly accounting for any warping restraints.

7.5.1 Elastic Method

AISC Design Guide 9 can be used to calculate the elastic 

torsional strength of an equivalent straight member. Because 

the torsion diagrams for curved beams are typically non-

linear, conservative assumptions are usually required to 

accommodate the design charts in Appendix B of the Design 

Guide. The simplest loading case with a uniform moment 

over the unbraced length, as shown in Figure 7-2(a), results 

in a uniformly distributed torsion, as shown in Figure 7-2(b). 

For this loading condition, the torsional functions can be 

determined with Case 4 or Case 7, depending on the warping 

boundary conditions at the supports. For simply supported 

beams subjected to uniformly distributed loads, the maxi-

mum value of mzc within the span can be used as a conserva-

tive estimate of the uniform torsion per unit length. Using 

this simpli�cation with Case 4 for a beam with free warping 

at the boundaries results in an overestimate of torsional rota-

tions by 23%.

For composite I-shaped beams, as shown in Figure 7-5(a), 

the torsional properties are based on the idealized trans-

formed section shown in Figure  7-5(b) (Heins and Kuo, 

1972). The normalized warping functions and warping stati-

cal moments are shown in Figures 7-5(c) and 7-5(d), respec-

tively. The torsional constant is:
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The warping constant is:
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The normalized warping function for the slab is:
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The normalized warping function for the steel section is:
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The warping statical moment for the slab is:

 
S

yb t

8
wc

e e
2

=

 
(7-29)

The warping statical moment for the steel section is:
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The shear center location is:
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where

E  = modulus of elasticity of the steel section, ksi

Ec = modulus of elasticity of the slab, ksi

G  = shear modulus of the steel section, ksi

Gc = shear modulus of the slab, ksi

be  = effective slab width, in.

bf  = �ange width, in.

de  =  d + (te − tf)/2 = distance between �ange centroids of 

the idealized section, in. 

m  = G/Gc = shear modular ratio 

n  = E/Ec = modular ratio 

tc  = slab thickness, in.

te  = tc/n = transformed slab thickness, in.

tf  = �ange thickness, in.

7.5.2  Isolated Flange Method

If the St. Venant torsion is neglected, the torsional loads are 

resisted exclusively by warping. For I-shaped members, 

the warping strength can be approximated by isolating the 

�anges and treating them as independent rectangular beams 

loaded in the horizontal plane by a distributed radial force 

per unit length calculated with Equation  7-32. The radial 

force is applied toward the center of curvature at the tension 

�ange and away from the center of curvature at the compres-

sion �ange as shown in Figure 7-6.
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where

ho = distance between �ange centroids, in.

The �exural boundary conditions of the isolated �ange 

are based on the warping boundary conditions of the curved 

member. If warping is restrained at the support, the isolated 

�ange will be modeled with a �exurally �xed end. For free 

warping, the isolated �ange will be modeled with a �exur-

ally pinned end. For sections with compact �anges, the nom-

inal �exural strength of the isolated �ange is:

 Mnw = FyZ f (7-33)

The plastic modulus about the strong axis of the �ange is:
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where

bf = �ange width, in.

tf  = �ange thickness, in.

For the beam in Figure 7-2(a), the moment diagram for 

the isolated top �ange, shown in Figure 7-2(e), is based on 

the compression �ange radial load shown in Figure 7-2(d). 

Because the member is continuous across the in�ll beams, 

warping is restrained at the ends of the unbraced segment. 

For this condition, the moment diagram for the equivalent 

straight beam isolated �ange is based on a �xed-�xed uni-

formly loaded beam.

The basic steps for the isolated �ange method are:

1. Construct the primary moment diagram for the equiv-

alent straight beam segment between points of tor-

sional restraint, Ldb.

2. Convert the warping boundary conditions to the 

appropriate �exural boundary conditions for the iso-

lated �ange.

3. Using the primary moment diagram and Equa-

tion  7-32, calculate the distributed radial force per 

unit length, ffc, to be applied to the isolated �ange.

4. Construct the moment diagram for the isolated �ange. 

  

 (a) Dimensions (b) Idealized section

  

 (c) Normalized warping function (d) Warping statical moment

Fig. 7-5. Torsional properties of a composite beam.

https://www.civilenghub.com/AISC/124126441/AISC-833?src=spdf


AISC DESIGN GUIDE 33 / CURVED MEMBER DESIGN / 83

5. Evaluate both �anges under the combined actions, 

including second-order effects, as discussed in Sec-

tion 7.6.

7.6  COMBINED FLEXURE AND TORSION

As with straight members, curved members subjected to both 

�exure and torsion must consider the effects of load interac-

tion. After the required �exural and torsional moments are 

determined, the available member strength is calculated 

either by combining the stresses or by combining the load 

ratios in an interaction equation. In either case, second-order 

effects must be considered.

7.6.1  Second-Order Effects

Second-order torsional moments and rotations can be calcu-

lated either by using a rigorous second-order analysis or by 

amplifying the results of a �rst-order analysis. Ampli�cation 

factors similar to those in AISC Speci�cation Appendix 8 

for straight members can be used for curved members (Ret-

tie, 2015; AASHTO, 2014; Ashkinadze, 2008; Lindner and 

Glitsch, 2005; Boissonnade et al., 2002; Trahair and Teh, 

2000; Pi and Trahair, 1994). For open sections subjected to 

both torsion and strong-axis �exure, the second-order tor-

sional rotation is:

 θ2 = Boθ1 (7-35)

The second-order torsional moment is:

 Mrz = BoMz (7-36)

The ampli�cation factor is:
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where

Meo =  elastic critical lateral-torsional buckling moment 

for out-of-plane �exure, kip-in.

Mro = required out-of-plane �exural moment, kip-in.

Mz = �rst-order torsional moment, kip-in.

θ1 = �rst-order torsional rotation, rad

α  = 1.0 (LRFD); 1.6 (ASD)

Where compression �ange bracing is spaced close enough 

to satisfy Lb ≤ Lp according to AISC Speci�cation Chapter 

F, torsional moments can be based on a �rst-order analysis. 

Because closed sections are typically not subject to lateral-

torsional buckling, the second-order contribution to the tor-

sional moment is negligible for these members.

7.6.2  Noncomposite I-Shaped Members

Noncomposite I-shaped members can be evaluated using 

either the elastic method or the isolated �ange method, which 

are discussed in Sections 7.5.1 and 7.5.2, respectively. When 

the isolated �ange method is used to determine the �ange 

warping moment, the out-of-plane moment can be combined 

with the �ange warping moment by adapting AISC Speci�-

cation Equation H1-1a:
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where

Mco =  available out-of-plane �exural strength of the mem-

ber, kip-in.

Mcw =  available �exural strength of the isolated �ange, 

kip-in. 

 = ϕMnw (LRFD)

 = Mnw/Ω (ASD) 

Mnw =  nominal �exural strength of the isolated �ange, 

kip-in.

Mro  =  required out-of-plane �exural strength of the mem-

ber, kip-in.

Mrw =  required second-order �exural strength of the iso-

lated �ange, kip-in.

Ω = 1.67

ϕ = 0.90

When the elastic method is used, the warping stresses cal-

culated with AISC Design Guide 9 can be combined with 

the member �exural stresses by adapting AISC Speci�ca-

tion Equation H1-1a for elastic stresses according to Equa-

tion 7-39. The 16/27 value for the constant is the result of 

dividing 8/9, which is the constant from Equation H1-1a, by 

3/2, which is the shape factor of the �ange.
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Fig. 7-6. The isolated flange method  

(adapted from King and Brown, 2001).
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where

σco = available out-of-plane �exural stress, ksi

σcw  =  available warping stress, ksi

 = ϕFy (LRFD)

 = Fy/Ω (ASD)

σro = required out-of-plane �exural stress, ksi

σrw = required second-order warping stress, ksi

Ω = 1.67

ϕ = 0.90

Analysis by Finite Element model

For �nite element models with the �anges modeled as rect-

angular beam elements, the strong axis of the element will be 

oriented vertically with the warping stresses varying across 

the element depth. The analysis will result in both axial and 

�exural loads on the element due to out-of-plane �exure and 

warping of the curved beam, respectively. The elements can 

be evaluated using the equations in Speci�cation Section H1. 

For �nite element models with the �anges modeled as plate, 

shell or solid elements, the required member loads for use 

with the equations in AISC Speci�cation Section H1 should 

be determined by summing the stresses over the element as 

discussed in Section 7.3.1.

7.6.3  HSS and Box-Shaped Members

Round, square and rectangular HSS members and box-

shaped members can be designed according to AISC Speci-

�cation Section H3.2. For combined �exure, shear and 

torsion, Equation H3-6 reduces to:
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where

Mcz  = available torsional strength, kip-in.

Mrz  = required torsional strength, kip-in.

Vc  = available shear strength, kips

Vr  = required shear strength, kips

For evaluation using stresses, Equation  7-40 can be 

expressed using the stress ratios:
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(7-41)

where

τct  = available shear stress for torsional loads, ksi

τcv = available shear stress for shear loads, ksi

τrt  = required shear stress due to torsional loads, ksi

τrv  = required shear stress due to shear loads, ksi

7.6.4  Composite I-Shaped Members

For partially and fully composite straight and curved beams 

subjected to torsion, the concrete slab provides most of the 

torsional resistance. The steel member enhances the slab 

strength by restraining the longitudinal deformation. Tor-

sional strength increases when the member is subjected to 

�exural loading because �exural compression in the slab par-

tially opposes the torsional tensile stresses, which decreases 

the concrete cracking (Tan and Uy, 2011; Tan and Uy, 2009; 

Nie et al., 2009). Therefore, the interaction between torsion 

and �exure can be neglected for partially and fully compos-

ite beams, and the torsional and �exural strengths can be 

veri�ed independently.

7.7  SERVICEABILITY

As discussed in Sections 7.1 and 7.2, large vertical, hori-

zontal and torsional deformations at ultimate strength often 

result in designs based on serviceability rather than strength. 

A reasonable limit on the maximum angle of rotation will 

ensure nonstructural elements are not damaged by exces-

sive rotations. There are no formal limits in building codes; 

therefore, judgment should be used to de�ne the appropri-

ate de�ection and rotation limits based on the type of build-

ing elements supported by the beam. When Equation 7-37 

is used to calculate the second-order ampli�cation factor 

for serviceability conditions, α = 1.00 can be used for both 

LRFD and ASD. Additional considerations, such as �oor 

vibrations, may result in other serviceability performance 

criteria. 

In the serviceability evaluation, the maximum normal 

stress in the member should be limited to the �rst-yield stress 

(Bremault et al., 2008; Driver and Kennedy, 1989). Alterna-

tively, for I-shaped members in the inelastic range, the tor-

sional rotation, θ2i, can be estimated with Equation 7-42a (Pi 

and Trahair, 1994). For closed shapes, a strength evaluation 

according to Equation 7-40 or 7-41 will ensure nominally 

elastic behavior and the elastic deformations can be used to 

evaluate serviceability limits.
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where

α t =  ratio of required torsional moment to plastic torsional 

strength

The value of α t can be estimated with Equations 7-42b 

and 7-42c for the isolated �ange method and the elastic 

method, respectively:
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