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This is smaller than the out-of-plane γe values discussed in the following sections. Because this estimate is also small enough 

such that the corresponding 1.6/γeL is greater than 0.1, it is useful only for determining that either Section 4.6.2, Item 4b, should 

be satis�ed, or a more rigorous estimate of γeL should be determined.

7.9 OUT-OF-PLANE ELASTIC CONSTRAINED-AXIS TORSIONAL AND  

LATERAL-TORSIONAL BUCKLING (CATB AND LTB) ANALYSIS CALCULATIONS

Figure 7-10 shows a model for calculation of the out-of-plane elastic buckling load ratio under axial compression, considering 

the doubly tapered roof girder design segment targeted in this example. It is expected that the out-of-plane buckling is governed 

by CATB about the outside (top) �ange for this case. This is due to the intermediate out-of-plane lateral bracing of the top �ange 

at the middle of the segment, whereas the bottom �ange is laterally unsupported along the entire segment length. In addition to 

these CATB results, the results of a similar model employed to evaluate the elastic LTB load ratio for this design segment, γeLTB, 

are presented in the following.

For the model shown in Figure 7-10, �exural and warping continuity is released between this design segment and the adjacent 

unbraced lengths within the roof girder. The doubly tapered segment shown here is isolated from the overall frame and subjected 

to ideal torsionally and �exurally simply supported end conditions. The combination of the purlin bracing of the outside �ange 

and the diagonal bracing to the inside �ange, located at the ends of the segment, is assumed to prevent out-of-plane lateral dis-

placement and twist. The end lateral displacement constraints as well as the torsional constraints are denoted by the black arrows 

with the slash through them. In addition, the roof girder is constrained (i.e., braced) out-of-plane at the intermediate purlin loca-

tion on its top �ange. This constraint is indicated by the black arrow with the slash through it shown at mid-length of the top 

�ange. An axial load of 31.6 kips, equal to the largest value of the internal axial compression within the subject length, obtained 

from the load-de�ection analysis results in Figure 7-5, is applied at the cross-section centroid at the righthand end of the segment. 

This load is indicated by a lighter-colored arrow without a slash at the righthand end. The forces and moments indicated by the 

other arrows are notional lateral loads and notional moments discussed in the following.

Given the geometry and support conditions illustrated in Figure 7-10, the out-of-plane elastic buckling capacity of the member 

is in�uenced signi�cantly by major-axis bending induced by the axial loads. However, γeCAT pertains to the case of internal axial 

load with zero bending. Therefore, to obtain a rigorous solution for γeCAT using an elastic buckling analysis, notional lateral loads 

and notional moments must be applied at the locations of the pinch point and steps in the �ange thicknesses in this problem. 

The notional lateral loads and the notional moments cancel the moments caused by the deviation of the member centroidal axis 

from a straight line (due to the steps in the cross section as well as the change in the web taper at the different locations along 

the member length).

As noted in Section 7.2, the bottom �ange thickness steps from 4  in. to a  in. at the pinch point, and the top �ange thick-

ness steps from 2 in. to 4 in. at 0.5 ft to the right of the pinch point. Figure 7-11(a) shows a free-body diagram of the subject 

length, subjected to concentrically applied axial forces at the design segment ends. Figure 7-11(b) shows the corresponding 

�rst-order internal moments employed in the elastic linear buckling analysis of this segment in the absence of notional lateral 

Fig. 7-10. γeCAT model for the subject doubly tapered roof girder design segment.
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(d) Notional lateral loads and moments giving zero net internal moment, and corresponding end reactions

Fig. 7-11. Calculation of notional horizontal loads and notional moments required to  

cancel the bending effects due to concentrically applied end axial forces in the CATB analysis.

loads and moments. Figure 7-11(c) shows the notional shear forces necessary, along with concentrated notional moments at the 

two cross-section transition points, to generate the negative of the moment diagram shown in Figure 7-11(b). These shear forces 

are obtained by dividing the change in the moment along each of the partial member lengths by the corresponding length. Fig-

ure 7-11(d) shows the �nal notional lateral loads and notional moments required to cancel the internal bending moments due to 

the concentrically applied end axial loads, as well as the corresponding end reactions. The notional lateral loads are calculated 

as the difference in the internal notional shear forces at the cross-section transition points from Figure 7-11(c), and the notional 

moments are obtained as the difference in the internal moments at the transition points from Figure 7-11(b).
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The creation of a “pure axial load” condition for a member whose centroidal axis is not a straight line—such that (1) an out-of-

plane buckling analysis for pure axial compression can be conducted, followed by (2) a separate out-of-plane LTB analysis of 

the member subjected to bending only, not considering any axial compression (as presented in the following discussions)—is 

a convoluted arti�ce of the ordinary member design approach of determining separate axial compressive and �exural strength 

ratios, then combining these ratios within a strength interaction equation. This separation of axial compression and �exure is suf-

�cient, and lacks complications, for design of nominally straight members. The same cannot be said for the design of members 

that do not have a nominally straight centroidal axis. The inelastic buckling analysis solution shown subsequently in Section 7.15 

avoids these complications by providing a direct assessment of the non-straight member subjected to the combined bending and 

axial compression.

Figure 7-12 shows the CATB mode for this problem. The buckling de�ections are dominated by twisting about the top of the 

outside �anges (i.e., the location of the attachment of the purlins). The corresponding elastic buckling load ratio is γeCAT = 10.5. 

That is, this doubly tapered design segment theoretically bifurcates into the CATB mode at 10.5 times the internal axial forces 

associated with the required ASD load combination.

Figure 7-13(a) shows a free-body diagram of the subject roof girder design segment showing the applied loads employed to cal-

culate the elastic LTB load ratio, γeLTB. The end moment values of 43.1 kip-ft and 118 kip-ft are the required ASD end moments 

obtained from Figure 7-4. The transverse load applied to the top �ange is the component of the load transferred from the cor-

responding purlin perpendicular to the design axis. The other applied loads are the reverse of the notional loads calculated in 

Figure 7-11. These loads produce the effect of the estimated internal axial force of 31.6 kips acting through the changes in the 

orientation and offset of the member centroidal axis. The end shear forces in Figure 7-13(a) are determined from static equilib-

rium, given the previous applied loads. Figure 7-13(b) shows the internal moment diagram corresponding to these loads. This 

diagram is a close approximation of the moment diagram from Figure 7-4 for the subject length.

Figure 7-14 shows the LTB mode for the subject doubly tapered roof girder design segment. The displacement boundary condi-

tions for this model are the same as those for the previous CATB model, and the shape of the buckling mode is very similar to that 

of Figure 7-12. However, in this case, the segment is subjected to applied loads producing the moment diagram from Figure 7-4 

rather than loads producing pure axial compression equal to the values from Figure 7-5. (The reader might note that the notional 

loads from Figure 7-12 are applied in the opposite direction in this model, to generate the effect of the member axial force acting 

through the variations in the cross-section centroid along the length, and that the magnitude of these effects is relatively small 

compared to the other moments within the length of the design segment.) The subject roof girder design segment theoretically 

bifurcates elastically into the mode shown in Figure 7-14 at a load ratio of γeLTB = 9.67. That is, theoretical elastic LTB of this 

segment occurs at 9.67 times the required ASD internal moments. The corresponding solution using the moments determined 

using the ELM load-de�ection analysis requirements is γeLTB = 9.86.

The reader might be interested in the sensitivity of γeLTB to the various details of the stepped and doubly tapered geometry of the 

subject design segment, because both steps in the cross section as well as the change in the taper angle occur within approxi-

mately 20% of the total segment length from its lefthand end. In addition, the reader might question whether the midlength lateral 

Fig. 7-12. CATB of the subject doubly tapered roof girder design segment at 10.5× the ASD required axial force.
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(b) Internal moment diagram (units: kip-in.) for subject unbraced length

Fig. 7-13. Free-body and moment diagrams for calculation of the elastic  

LTB load ratio, γeLTB, for the subject doubly tapered roof girder design segment.

Fig. 7-14. Elastic LTB of the doubly tapered roof girder design segment at 9.67× the ASD required internal moments.
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brace at the top �ange has any signi�cant in�uence on the elastic LTB resistance for this problem. The following modi�ed elastic 

buckling solutions are useful in addressing these questions:

• If the top �ange brace is removed from the model with the DM loading, γeLTB is reduced to 9.48 (i.e., a reduction in capacity 

of only 2%).

• In addition, if the 6 in. × 4 in. top �ange and the 6 in. × a in. bottom �ange are extended over the full length of the design 

segment, eliminating the steps in the cross-section dimensions, γeLTB is reduced to 9.33, a total reduction of only 3.5%.

• Lastly, if the web taper is modi�ed to a single linear taper from the maximum web depth of 31.2 in. at the righthand end to 

a minimum depth of 23.1 in. at the lefthand end (such that the geometry to the right of the pinch point is unchanged), γeLTB 

is reduced to only 9.24, a total reduction of only 4.4%.

7.10 MANUAL ESTIMATION OF γγeCAT AND γγeLTB FOR THE SELECTED DOUBLY TAPERED  

ROOF GIRDER DESIGN SEGMENT

The subject doubly tapered roof girder design segment has measurable steps in its top and bottom �ange thickness in addition to 

its doubly tapered web geometry (Table 7-1). Therefore, this segment has substantial geometric complexity. A coarse estimate 

of the elastic buckling load ratio, γeCAT, of this segment can be obtained by applying Equation 5-10 with different cross sections 

along the segment length, taking PeCAT as the smallest value from these calculations, then dividing PeCAT by the largest value of 

the internal axial force along the segment length.

The cross section at the left end of the design segment gives the smallest value of PeCAT. The corresponding calculations are as 

follows:

ho = h + t f1 2+ t f 2 2

= 24.648 in.+2 in. 2+4 in. 2

= 25.0 in.

At the top �ange:

Iy1 =
tf1b f1

3

12

=
2 in.( ) 6 in.( )3

12

= 9.00 in.
4

 

(5-12)

At the bottom �ange:

Iy2 =
tf 2b f 2

3

12

=
4 in.( ) 6 in.( )3

12

= 4.50 in.
4

 

(5-13)

Cw =
ho

2I y1
Iy1

I y2

+1

=
25.0 in.( () )2

9.00 in.
4

9.00 in.
4

4.50 in.
4

+1

= 1,880 in.
6

⎛

⎝
⎜

⎞

⎠
⎟
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I y = I y1 + I y2 +
htw
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−
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PeCAT =
2E Cw + Iyas
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The maximum required compressive strength toward the righthand end of the design segment is:

Pr = 31.9 kips

eCAT =
PeCAT

Pr

=
401 kips

31.9 kips

= 12.6

γ

This value is a reasonable rough estimate of the rigorous value of γeCAT  = 10.5 determined from an elastic linear buckling analysis.

The elastic LTB load ratio for the subject doubly tapered roof girder design segment may be estimated using the procedure 

discussed in Appendix C.2. This procedure requires the calculation of the maximum ratio, fr/FeLTB1, as well as fr/FeLTB1 at the 

quarter points and middle of the unbraced length under consideration. In this example, the unbraced length, Lb, should be taken 

as the overall length of the design segment = 99.86 in. (according to AISC Speci�cation Appendix 6, Section 6.3.1) because the 

segment has a reversal in the sign of the bending moment and only the top �ange is braced at the intermediate purlin bracing 

location. Upon calculating fr/FeLTB1 at various points, one can determine that the maximum fr/FeLTB1 occurs at the right end of the 

design segment in this problem. The elastic LTB stress of a prismatic unbraced length having the cross section at this location is 

determined as follows:

ho = h + t f1 2+ tf 2 2

= 31.173 in.+4 in. 2+a in. 2

= 31.5 in.

d = h + t f1 + tf 2
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−
⎡

⎣
⎢
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⎦
⎥

⎛
⎝

⎞
⎠
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hc

tw

=
28.7 in.

x in.

= 153

The web at this cross section is slender. Therefore, the St. Venant torsional stiffness is neglected in the calculation of the elastic 

LTB stresses:

aw =
hctw

bfct fc

=
28.7 in.( ) x in.( )

6 in.( ) a in.( )

= 2.39  

(Spec. Eq. F4-12)
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From Figure 7-2, Lb = 99.86 in.
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From Figure 7-13(a), Mr = 1,420 kip-in.

fr =
Mr

Sxc

=
1,420 kip-in.

94.4 in.3

= 15.0 ksi

For compression on the bottom �ange:

fr

FeLTB1 max

=
15.0 ksi

62.9 ksi

= 0.238

⎛
⎝

⎞
⎠

Following the same calculation procedures, the corresponding ratios of the compression �ange applied to elastic buckling stresses 

at the quarter points and mid-length locations A, B, and C are:

Compression on the top �ange:

fr

FeLTB1 A

=
3.41 ksi

56.3 ksi

= 0.0606

⎛
⎝

⎞
⎠

Compression on the bottom �ange:

fr
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=
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⎛
⎝

⎞
⎠

fr

FeLTB1 C

=
10.0 ksi

63.7 ksi

= 0.157

⎛
⎝

⎞
⎠

It should be noted that because the top �ange is in compression at point A, FeLTB1 is based on the top �ange rt = 1.40 in. at that 

location. In addition, the reader should note that none of the �ange areas or lateral bending moments of inertia change by more 

than a factor of 2.0 at the steps in the �ange thickness (Table 7-1), and as discussed at the end of Section 7.9, the pinch point and 

the steps in the �ange thickness occur approximately within 20% of the total segment length from its lefthand end.

Given the previous ratios, the LTB modi�cation factor may be estimated as:

Cb =
4

fr

FeLTB1 max
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+ 4
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+ 7
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⎛
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⎠

 

(5-29)

where the nonprismatic geometry factor, χ, is determined as follows, using the procedure discussed in Appendix C.2:

• The steps in the cross-section geometry all occur between the lefthand support and the lefthand quarter point of the unbraced 

length (point A). Therefore, from Appendix C.3, the smallest FeLTB1 from the cross sections between the lefthand end of the 

unbraced length and point B is employed for the FeLTB1 corresponding to point A. This value of FeLTB1 is already employed 

in the previous calculations.

• β1 = 1.50° and β2 = 4.61°, based on the geometries detailed in Figure 7-2 and Table 7-1.

• L1 = 14.39 in. and Lb = 99.86 in. (see Figures 7-2 and 7-13).

• hmin = 24.275 in. at the pinch point, and hmax = 31.173 in. at the righthand end of the unbraced length, based on the geom-

etries detailed in Figure 7-2 and Table 7-1.
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•
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(C-2b)

• Given these parameters:
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(C-3)

• β1 + β2 is positive; therefore, rK = 0.0. (C-4a)

• The unbraced length is subjected to reversed-curvature bending.

• From these parameters:

 

= 1+ rI + rDT + rK 1.0

= 1 0.0307+ 0.000863+ 0.0

= 0.970 <1.0

≤χ

−

 

(C-1b)

The subject unbraced length has steps in the cross-section dimensions in addition to the double taper of its web. Therefore, the χ 

value must be multiplied by the χ factor explained in Appendix C.3 to also account for the stepped geometry effects. The maxi-

mum shift in the shear center due to the steps in the cross-section geometry is (see Figure 7-2):

dSmax = 10.549 in. 7.967 in. 

= 2.582 in.

−

Therefore, the χ factor addressing the in�uence of the steps in the cross-section geometry is:

= 1 9
dSmax

Lb

= 1 9
2.582 in.

99.86 in.

= 0.767

χ

−

−

⎛
⎝

⎞
⎠

 

(C-9)

https://www.civilenghub.com/AISC/141567212/AISC-825?src=spdf
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