AS 5100.6 Supplement 1-2007

Bridge design—Steel and composite construction—Commentary (Supplement to AS 5100.6—2004)

AUSTRALASIAN RAILWAY ASSOCIATION INC

This Australian Standard Supplement was prepared by Committee BD-090, Bridge Design. It was approved on behalf of the Council of Standards Australia on 17 April 2007. This Supplement was published on 4 December 2007.

The following are represented on Committee BD-090:

- AUSTROADS
- Association of Consulting Engineers Australia
- Australasian Railway Association
- Bureau of Steel Manufacturers of Australia
- Cement Concrete & Aggregates Australia—Cement
- Engineers Australia
- Queensland University of Technology
- Steel Reinforcement Institute of Australia
- University of Western Sydney

Standards Australia wishes to acknowledge the participation of the expert individuals that contributed to the development of this Supplement through their representation on the Committee.

Keeping Standards up-to-date

Australian Standards® are living documents that reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued.

Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments that may have been published since the Standard was published.

Detailed information about Australian Standards, drafts, amendments and new projects can be found by visiting www.standards.org.au

Standards Australia welcomes suggestions for improvements, and encourages readers to notify us immediately of any apparent inaccuracies or ambiguities. Contact us via email at **mail@standards.org.au**, or write to Standards Australia, GPO Box 476, Sydney, NSW 2001.

AS 5100.6 Supplement 1—2007

Bridge design—Steel and composite construction—Commentary (Supplement to AS 5100.6—2004)

Originated as HB 77.6 Supp 1—1996. Revised and redesignated AS 5100.6 Supp 1—2007.

COPYRIGHT

© Standards Australia

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher.

Published by Standards Australia GPO Box 476, Sydney, NSW 2001, Australia ISBN 0 7337 8425 9

PREFACE

This Commentary was prepared by the Standards Australia Committee BD-090, Bridge design to supersede HB 77.6 Supp 1, Australian Bridge Design Code—Steel and Composite Construction—Commentary (Supplement to SAA HB 77.6—1996).

The objective of this Commentary is to provide users with background information and guidance to AS 5100.6—2004.

The Standard and Commentary are intended for use by bridge design professionals with demonstrated engineering competence in their field.

In this Commentary, AS 5100.6–2004 is referred as 'the Standard'.

The clause numbers and titles used in this Commentary are the same as those in AS 5100.6, except that they are prefixed by the letter 'C'. To avoid possible confusion between the Commentary and the Standard, a Commentary clause is referred to as 'Clause C.....' in accordance with Standards Australia policy.

CONTENTS

SECTIO	N C1 SCOPE AND GENERAL	
C1.1	SCOPE AND APPLICATION	6
C1.2	REFERENCED DOCUMENTS	6
C1.3	NOTATION	7
RECTIO		
SECTIO	N C2 MATERIALS VIELD STDESS AND TENSUE STDENGTH USED IN DESIGN	0
C2.1	YIELD STRESS AND TENSILE STRENGTH USED IN DESIGN	ð
C2.2	SIKUCIUKAL SIEEL	8
C2.3	CONCRETE, REINFORCING AND PRESTRESSING STEELS	9
C2.4	FASTENERS	9
C2.5		9
C2.6	WELDED STUD SHEAK CONNECTORS	9
C2.7	STEEL CASTINGS	9
C2.8		10
C2.9		10
C2.10	JCAST IKON	. 10
SECTIO	N C3 GENERAL DESIGN REOUIREMENTS	
C3.1	GENERAL	11
C3.2	DESIGN FOR STRENGTH	11
C3.3	DESIGN FOR SERVICEABILITY	13
C3.4	DESIGN FOR STRENGTH AND SERVICEABILITY BY LOAD TESTING	13
C3.5	BRITTLE FRACTURE	13
C3.6	FATIGUE	13
C3.7	CORROSION RESISTANCE AND PROTECTION	14
C3.8	DESIGN FOR FIRE RESISTANCE	. 15
C3.9	PARTICULAR DESIGN REQUIREMENTS	15
SECTIO	N CA METHODS OF STRUCTURAL ANALVSIS	
SECTIO	N C4 METHODS OF STRUCTURAL ANALYSIS	10
C4.1	METHODS OF DETERMINING ACTION EFFECTS	20
C4.2	MEMDED DUCKLING ANALVSIS	20
C4.3	ANALYSIS OF COMPOSITE DEAMS CIDDEDS AND COLUMNS	. 22
C4.4	ANALYSIS OF COMPOSITE DEAMS, UIRDERS AND COLUMINS	22
C4.5	STAGED CONSTRUCTION	23
C4.0	CONNECTIONS	. 23
C4.7	LONGITUDINAL SHEAR	25
$C_{4.0}$	SHRINKAGE AND DIFFERENTIAL TEMPERATURE EFFECTS	26
C4.10	RIGOROUS STRUCTURAL ANALYSIS	27
SECTIO	N C5 STEEL BEAMS	
C5.1	DESIGN FOR BENDING MOMENT	. 29
C5.2	SECTION MOMENT CAPACITY FOR BENDING ABOUT A PRINCIPAL AXIS	32
C5.3	MEMBER CAPACITY OF SEGMENTS WITH FULL LATERAL RESTRAINT	.32
C5.4	RESTRAINTS	. 33
C5.5	CRITICAL FLANGE	.35
C5.6	MEMBER CAPACITY OF SEGMENTS WITHOUT FULL	25
055	LATEKAL KESTRAINT.	.35
C5.7	BENDING IN A NON-PRINCIPAL PLANE	. 40

	Page
C5.8 DESIGN OF WEBS	41
C5.9 ARRANGEMENT OF WEBS	41
C5.10 SHEAR CAPACITY OF WEBS	43
C5.11 INTERACTION OF SHEAR AND BENDING	46
C5.12 COMPRESSIVE BEARING ACTION ON THE EDGE OF A WEB	47
C5.13 DESIGN OF LOAD-BEARING STIFFENERS	48
C5.14 DESIGN OF INTERMEDIATE TRANSVERSE WEB STIFFENERS	49
C5.15 DESIGN OF LONGITUDINAL WEB STIFFENERS	50
SECTION C6 COMPOSITE BEAMS	
C6.1 GENERAL	53
C6.2 DESIGN FOR BENDING MOMENT	54
C6.3 SECTION MOMENT CAPACITY	54
C6.4 BEAM MOMENT CAPACITY	55
C6.5 VERTICAL SHEAR CAPACITY	55
C6.6 LONGITUDINAL SHEAR	55
SECTION C7 COMPOSITE BOX GIRDERS	
C7 1 DESIGN OF COMPOSITE BOX GIRDERS	58
C7.2 COMPOSITE BOX GIRDERS WITHOUT LONGITUDINAL STIFFENERS	50
C7.3 ELANGES IN BEAMS WITH LONGITUDINAL STIFFENERS	58
C7.4 WERS IN BEAMS WITH LONGITUDINAL STIFFENERS	50
C7.5 TDANSVEDSE MEMDEDS IN STIEFEENED EI ANGES	59
C7.6 DIAPHRAGMS AT SUPPORTS	60
C7.7 LONGITUDINAL SHEAD	00
C7.8 GEOMETRIC REQUIREMENTS FOR LONGITUDINAL STIEFENERS	05
C7.8 GEOMETRIC REQUIREMENTS FOR LONGITUDINAL STIFFENERS	05
SECTION C8 TRANSVERSE MEMBERS AND RESTRAINTS	
C8.1 GENERAL	65
C8.2 DEFINITIONS	65
C8.3 PARTICULAR REQUIREMENTS	65
C8.4 DESIGN OF RESTRAINTS TO FLEXURAL MEMBERS	65
C8.5 SEPARATORS AND DIAPHRAGMS	66
C8.6 DESIGN OF RESTRAINTS TO COMPRESSION MEMBERS	67
SECTION C9 MEMBERS SUBJECT TO AXIAL TENSION	
C9.1 DESIGN FOR AXIAL TENSION	68
C9.2 NOMINAL SECTION CAPACITY	68
C9.3 TENSION MEMBERS WITH TWO OR MORE MAIN COMPONENTS	70
C9.4 MEMBERS WITH PIN CONNECTIONS	70
SECTION C10 MEMBERS SUBJECT TO AXIAL COMPRESSION	
C10.1 DESIGN FOR AXIAL COMPRESSION	72
C10.2 SECTION CAPACITY	72
C10.3 NOMINAL MEMBER CAPACITY	73
C10.4 LACED AND BATTENED COMPRESSION MEMBER	75
C10.5 COMPRESSION MEMBERS BACK-TO-BACK	77
C10.6 COMPOSITE COMPRESSION MEMBERS	78
SECTION C11 MEMBERS SUBJECT TO COMBINED ACTIONS	
C11.1 GENERAL	81
C11.2 DESIGN ACTIONS	
C11.3 SECTION CAPACITY	
C11.4 MEMBER CAPACITY	82
C11.5 CAPACITY OF COMPOSITE COMPRESSION MEMBERS	

Page

SECTIC	ON C12 CONNECTIONS	
C12.	1 GENERAL	86
C12.2	2 DEFINITIONS	86
C12.	3 PARTICULAR REQUIREMENTS FOR CONNECTIONS	86
C12.4	4 DEDUCTIONS FOR FASTENER HOLES	88
C12.:	5 DESIGN OF BOLTS, RIVETS AND PINS	89
C12.	6 DESIGN OF WELDS	98
SECTIC	DN C13 FATIGUE	
C13.	1 GENERAL	108
C13.2	2 FATIGUE LOADING	109
C13.	3 DESIGN SPECTRUM	110
C13.4	4 EXEMPTION FROM ASSESSMENT	111
C13.:	5 DETAIL CATEGORY	111
C13.	6FATIGUE STRENGTH	112
C13.	7 FATIGUE ASSESSMENT	113
C13.	8 PUNCHING LIMITATION	113
SECTIO		
SECTIC	INCI4 BRITTLE FRACTURE	115
C14.	I GENEKAL	115
C14.	2 METHODS	115
C14	3 NOTCH-DUCTILE KANGE METHOD	115
C14.4	4 DESIGN SERVICE TEMPERATURE	110
C14.	OMATERIAL SELECTION	110
C14.0	OFRACTURE ASSESSMENT	11/
SECTIC	N C15 TESTING OF STRUCTURES OR ELEMENTS	
C15.	1 GENERAL	122
C15	2 DEFINITIONS	122
C15	3 TEST REOUREMENTS	123
C15.4	4 PROOF TESTING	123
C15	5 PROTOTYPE TESTING	124
C15.	6 REPORT OF TESTS	125
015.		120
APPEN	DICES	
CA	ELASTIC RESISTANCE TO LATERAL BUCKLING	126
CB	STRENGTH OF STIFFENED WEB PANELS LINDER COMBINED ACTIONS	128
	SECOND ORDER ELASTIC ANALYSIS	120
	ECCENTRICALLY LOADED DOUBLE-BOLTED OR WELDED SINGLE	12)
CD	ANGLES IN TRUSSES	130
CE	NOMINAL SECTION MOMENT CADACITY FOR COMPOSITE SECTIONS	150
UE	UNDER SAGGING MOMENTS	121
CE	INTERACTION CURVES FOR COMPOSITE COLUMNS	127
	EADDICATION	132
		133
		142
CI	MUDIFICATION OF EXISTING STRUCTURES	14/

STANDARDS AUSTRALIA

Australian Standard

Bridge design—Steel and composite construction—Commentary (Supplement to AS 5100.6—2004)

SECTION C1 SCOPE AND GENERAL

C1.1 SCOPE AND APPLICATION

The Section sets out the requirements for the design of steel and composite construction in bridges, including road, railway and pedestrian bridges. The Section should also be used when structures of wrought or cast iron are being rated, but the appropriate material properties need to be used, as well as capacity reduction factors that reflect any reduced ductility.

Steel elements less than 3 mm in thickness are excluded for reasons of practicality, concern about corrosion, and because such sections are not used for bridges. Members from thinner material are usually cold-formed and fall within the scope of AS/NZS 4600. In addition, the connections in elements less than 3 mm thick are better handled by the provisions of AS/NZS 4600 than by the Standard.

The limit of 450 MPa for the yield stress used in design stems from a lack of research data on steel grades above this value, and the applicability of all of the member design provisions for a higher design yield stress cannot be confirmed. Australian steel Standards generally contain no steel grades with a specified yield stress greater than 450 MPa, with the exception of one grade (XF500) specified in AS/NZS 1594. Additional provisions to those in the Standards may be required for steels of higher yield stress.

The Clause does not preclude the use of steels having a specified yield stress greater than 450 MPa provided the yield stress used in design (f_y) is limited to 450 MPa.

Hollow section members specified in AS 1163 are most commonly cold-formed, but have traditionally been designed using the previous editions of the Standard since they were for many years hot-rolled. Tests carried out on members manufactured in accordance with AS 1163 confirm the applicability of the provisions of the Standard for such members. All other cold-formed members should be designed in accordance with AS/NZS 4600. Cold-formed hollow section members specified in AS 1163 with a wall thickness less than 3 mm should be designed in accordance with AS/NZS 4600, since the Clause excludes such members.

Composite steel construction is covered by Sections 6 and 7 of the Standard.

C1.1.1 Scope

(No Commentary.)

C1.1.2 Application

(No Commentary.)

C1.2 REFERENCED DOCUMENTS

The Standards listed in the Clause are subject to revision from time to time and the current edition should always be used. The currency of any Standard may be checked with Standards Australia.

C1.3 NOTATION

The basis of the notation is generally in accordance with ISO 3898, *Bases for Design of Structures—Notations—General Symbols*. Standards Australia's policy is to use ISO recommendations on notation wherever practicable in structural design Standards such as AS/NZS 1170 series, *Structural design actions*, AS 2327.1, *Composite structures—Simply supported beams*, AS 3600, *Concrete structures*, AS 4100, *Steel structures* and AS/NZS 4600, *Cold-formed steel structures*.

SECTION C2 MATERIALS

C2.1 YIELD STRESS AND TENSILE STRENGTH USED IN DESIGN

The yield stress and tensile strength given in material Standards are the minimum values for acceptance of a steel as satisfying the requirements of the appropriate Standard.

Both yield stress and tensile strength are defined, since some clauses use one while other clauses use the other or both. The values of the yield stress and tensile strength given in Table 2.1 of the Standard are those quoted in the appropriate Standard. Such Standards are regularly updated.

Variations in the yield stress and tensile strength, which occur during manufacture, are accounted for in the derivation of the capacity factor (ϕ) (see Clause C3.2). Because of this fact, the actual values of yield stress or tensile strength recorded on mill test reports or certificates cannot be used for design. The values given in Table 2.10f the Standard should not be exceeded in design or else the derived capacity factors given in Table 3.2 of the Standard are rendered invalid.

C2.1.1 Yield stress

(No Commentary.)

C2.1.2 Tensile strength

(No Commentary.)

C2.2 STRUCTURAL STEEL

C2.2.1 Compliance

The Standard has been written around the range of structural steels manufactured in Australia to the Standards listed in the Clause. The Standards listed are product type Standards.

All material specifications relevant to the product chemistry, mechanical properties, methods of manufacture, supply requirements, tolerances and dimensions are contained in the Standard for that product. This applies irrespective of steel type, including ordinary weldable grades, weather-resistant grades, formable grades and impact-tested grades. A review of AS/NZS 1594, *Hot-rolled steel flat products*, AS/NZS 3678, *Structural steel—Hot-rolled plates, floorplates and slabs*, AS/NZS 3679.1, *Structural steel—Hot-rolled bars and sections* and AS/NZS 3679.2, *Structural steel—Welded I sections*, may be found in Ref. 1.

C2.2.2 Acceptance of steel

(No Commentary.)

C2.2.3 Unidentified steel

Where the design yield or ultimate strength of steel is based on the testing of samples in accordance with AS 1391, and statistical methods are to be used to establish the mean yield or ultimate tensile stress and associated standard deviations, the procedure described in the Clause may be deemed to be an acceptable procedure. For parameters other than yield stress, the same procedure may be used.

Where only a small number of samples is tested, and there is a significant difference between the measured results, the characteristic yield strength $(f_{y,ch})$ may be calculated as follows:

$$f_{\rm y.ch} = f_{\rm y.mean} - ks$$

...C2.2.3

© Standards Australia

www.standards.org.au