Australian Standard[™]

Hydraulic shoring and trench lining equipment

This Australian Standard was prepared by Committee ME-082, Shoring and Trench Lining. It was approved on behalf of the Council of Standards Australia on 22 June 2004. This Standard was published on 2 June 2005.

The following are represented on Committee ME-082:

Australian Industry Group Civil Contractors Federation Construction, Forestry, Mining and Energy Union Institution of Engineers Australia Master Plumbers and Mechanical Services Association of Australia

Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about Standards can be found by visiting the Standards Web Shop at www.standards.com.au and looking up the relevant Standard in the on-line catalogue.

Alternatively, the printed Catalogue provides information current at 1 January each year, and the monthly magazine, *The Global Standard*, has a full listing of revisions and amendments published each month.

Australian StandardsTM and other products and services developed by Standards Australia are published and distributed under contract by SAI Global, which operates the Standards Web Shop.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Contact us via email at mail@standards.org.au, or write to the Chief Executive, Standards Australia, GPO Box 5420, Sydney, NSW 2001.

This Standard was issued in draft form for comment as DR 04004.

Australian Standard[™]

Hydraulic shoring and trench lining equipment

First published as AS 5047—2005.

COPYRIGHT

© Standards Australia

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher.

Published by Standards Australia, GPO Box 5420, Sydney, NSW 2001, Australia ISBN 0 7337 6750 8

PREFACE

This Standard was prepared by the Standards Australia Committee ME-082, Shoring and Trench Lining.

The objective of this Standard is to provide a specification for hydraulic shoring and trench lining equipment that achieves an acceptable level of safety, for reference by manufacturers, suppliers, users and regulators.

Statements expressed in mandatory terms in notes to tables are deemed to be requirements of this Standard.

The terms 'normative' and 'informative' have been used in this Standard to define the application of the appendix to which they apply. A 'normative' appendix is an integral part of a Standard, whereas an 'informative' appendix is only for information and guidance.

CONTENTS

Page

FOREW	ORD	5
SECTIO	N 1 SCOPE AND GENERAL	
1.1	SCOPE	6
1.2	NEW DESIGNS, INNOVATIONS AND DESIGN METHODS	6
1.3	NORMATIVE REFERENCES	6
1.4	TERMS AND DEFINITIONS	7
1.5	SYMBOLS	
1.6	DESIGNATION	
1.7	DECLARATION OF CONFORMITY	
1.8	MARKING	
SECTIO	N 2 MATERIALS	
2 1	CENEDAL	20
2.1		
2.2		
2.3	MINIMUM ELUNGATION	
2.4	SPECIAL REQUIREMENTS FOR HYDRAULIC RAMS	
2.5	FLEXIBLE HYDRAULIC HOSES	
SECTIO	N 3 STRUCTURAL COMPONENTS	
3.1	GENERAL	
3.2	DESIGN PARAMETERS	32
3.3	PARTIAL SAFETY FACTORS	
3 4	CONFIGURATION OF LOAD	33
3 5	MINIMUM VALUE OF CHARACTERISTIC RESISTANCES	37
3.6	DEFLECTION	37
37	HANDLING AND RESTRAINING POINTS (see Figure 13)	37
3.8	WALER OR SOLDIER RAIL TO STRUT CONNECTION	38
3.9	WALER OR SOLDIER STRUTS	38
3.10	RESTRAINING CHAIN	30
3.10	HVDRAULIC BRACING FRAME LEG AND HVDRAULIC RAM LEG	
3.11	WAI FR RAII	40
3.12	SOLDIER RAIL	40
5.15	SOLDIER RAIL	
SECTIO	N 4 HYDRAULIC COMPONENTS	
4.1	GENERAL	
4.2	HYDRAULIC RAMS	41
4.3	MANUFACTURING TOLERANCES FOR RAMS	
4.4	MOUNTING FASTENERS OR PINS	
4.5	BUCKLING RESISTANCE OF PISTON ROD	
4.6	HYDRAULIC SHORING FLUID	
4.7	RAM ACCEPTANCE TEST (PRE-DELIVERY TESTING)	44
4.8	VALVES AND HYDRAULIC FITTINGS	44
4.9	HYDRAULIC PUMP	45
SECTIO	N 5 INSTRUCTION MANUAL	
510	GENERAI	16
5.1	SDECIFICATION OF A DUMD AND DECEDVOID	
5.2 5.2	DATA	
5.5		

		Page
5.4	SPECIFICATIONS FOR ANCILLARY ITEMS	46
5.5	INFORMATION ABOUT USE	
5.6	MAINTENANCE	47
5.7	RAM SPECIFICATION	47
5.8	ENVIRONMENTAL, HEALTH, SAFETY AND POTENTIAL HAZARD	
	CONSIDERATIONS	51
SECTIO	ON 6 ASSESSMENT BY CALCULATION OR TEST	
61	GENERAL	52
6.2	CHOICE OF TESTING OR CALCULATION	<i>2</i> 52
63	ASSESSMENT BY CALCULATION	53
6.4	ASSESSMENT BY TESTING	
6.5	EVALUATION OF LOAD-BEARING CAPACITY AND STIFFNESS	
0.0	FROM TESTING METALLIC ASSEMBLIES AND COMPONENTS	56
APPEN	DICES	
А	PARTIAL SAFETY FACTORS	
В	RELATING CHARACTERISTICS RESISTANCES TO PERMISSIBLE	
	WORKING RESISTANCES GIVING VALUES FOR USE	
	IN CALCULATIONS	67
С	EXAMPLES OF LOAD CURVES	
D	HYDRAULIC RAM ACCEPTANCE TEST	
Е	DESIGNATION CHECK LIST	
F	DOCUMENTATION OF TEST RESULTS	80
G	EXAMPLE FOR THE DETERMINATION OF AN APPROXIMATION	
	FUNCTION, OF THE QUOTIENT (q_e) FOR THE DISSIPATION	
	OF ENERGY AND OF THE PARTIAL SAFETY FACT (γ_{R2})	82
Н	EXAMPLE FOR THE STATISTICAL EVALUATION OF TEST RESULTS	
	AND THE DETERMINATION OF THE NOMINAL CHARACTERISTIC	
	VALUE OF THE RESISTANCE	86
Ι	EXAMPLE FOR THE EVALUATION OF STIFFNESS	88

FOREWORD

Hydraulically operated shoring systems comprise prefabricated equipment to provide primary support to the side of excavations. This Standard covers three types of equipment whose resistance and adjustment is hydraulic or by a combination of hydraulic and mechanical means, as follows:

- (a) Hydraulic bracing frames.
- (b) Hydraulic waler frames.
- (c) Hydraulic soldier sets.

A variety of components when assembled form a full system. The prefabricated components are used to make assemblies of different dimensions and structural capacities.

Hydraulically operated shoring equipment has a limitation in use in that it is dependent on a competent person relating soil conditions to the use of the equipment.

This Standard gives specific requirements on the main characteristics of hydraulically operated pumps, hoses and associated equipment, but does not provide requirements for their specification or assessment.

Hydraulically operated shoring equipment is frequently used in conjunction with supplementary equipment, e.g., sheet piling, trench sheeting, knee braces and intermediate bracing struts. Such supplementary equipment is not covered in the Scope of this Standard.

The characteristic resistance values specified in this Standard form a reference level.

Appendix A gives information about the values of partial safety factors for materials (γ_M) and partial safety factor for actions (γ_F). Appendix B gives information on the application of characteristic resistance values to a safe working value.

Hydraulic bracing frames have a restriction limiting the length of a single leg to 20 m. Longer lengths of hydraulic frame legs are possible, but these may require an engineering design input that is not covered in this Australian Standard.

Statements expressed in mandatory terms in notes to Tables and Figures are deemed to be requirements of this Standard.

STANDARDS AUSTRALIA

Australian Standard Hydraulic shoring and trench lining equipment

SECTION 1 SCOPE AND GENERAL

1.1 SCOPE

This Standard specifies constructional and structural requirements for hydraulically operated shoring systems made from steel and aluminium for groundwork support. It also specifies methods of calculation and test to assess compliance with this Standard. It specifies minimum characteristic resistance for equipment and is limited to assemblies with components having hydraulic rams (see Note 1).

Materials other than steel and aluminium are not precluded; however, this Standard does not specify methods of assessment for equipment made of these materials.

This Standard also provides information on some of the main characteristics of hydraulically operated pumps, hoses and associated equipment, but does not cover assessment of these items.

NOTES:

- 1 Assemblies without hydraulic rams may be designed in accordance with AS 4100.
- 2 Information on the values of partial safety factors is given in Appendix A.
- 3 Information on the application of characteristic resistance values is given in Appendix B.

1.2 NEW DESIGNS, INNOVATIONS AND DESIGN METHODS

This Standard does not preclude the use of materials, designs, methods of assembly, procedures and the like which do not comply with a specific requirement of this Standard, or are not mentioned in it, but which can be shown to give equivalent or superior results to those specified.

1.3 NORMATIVE REFERENCES

The following documents are referred to in this Standard.

AS	
1180	Methods of test for hose made from elastomeric materials
1391	Methods for tensile testing of metals
1554	Structural steel welding (all parts)
1665	Welding of aluminium structures
1815	Metallic materials—Rockwell hardness test
1816	Metallic materials—Brinell hardness test
1817	Metallic materials—Vickers hardness test
2019	Fluid power—Hydraulic and pneumatic cylinders—Bore and rod dimensions
2074	Cast steels
2321	Short-link chains for lifting purposes

• 0

AS 2845 2845.1	Water supply—Backflow prevention devices Part 1: Materials, design and performance requirements
2848	Aluminium and aluminium alloys—Composition and designations— Wrought products
3791	Hydraulic hose
3997 3997.1	Fluid power—Fire-resistant hydraulic fluids Part 1: Classification
4041	Pressure piping
4100	Steel structures
4744 4744.1	Steel shoring and trench lining equipment Part 1: Design
AS/NZS 1664 1664.1	Aluminium structures Part 1: Limit state design
4291	Mechanical properties of fasteners (all parts)
ISO DIN 51524-1 DIN 51524-2 DIN 51524-3	Pressure fluids; hydraulic oils; HL hydraulic oils; minimum requirements Pressure fluids; hydraulic oils; HLP hydraulic oils; minimum requirements HVLP hydraulic oils; minimum requirements
SAE MS 1004	Lubricants, industrial oils, and related products Type H (hydraulic fluids)—Specification

CE TOP RP91 H Fluids for hydraulic transmissions

1.4 TERMS AND DEFINITIONS

For the purposes of this Standard definitions below apply.

1.4.1 Characteristic axial compression resistance (R_{KC})

Resistance of a hydraulic bracing frame leg, or a ram or a waler frame/soldier set strut with the piston rod of the ram fully extended.

1.4.2 Characteristic axial resistance for the return capacity of a double acting ram (R_{TA})

Resistance of the return capacity of a double acting ram.

1.4.3 Characteristic bending resistance for a leg at a reduction in section (R_{KB2})

Resistance of a hydraulic bracing frame leg where there is a reduction in section.

1.4.4 Characteristic bending resistance of a hydraulic bracing frame leg at a specified length $(R_{\text{KB-N}})$

Bending resistance of a hydraulic bracing frame leg at a specified length and of a specified assembly.

NOTES:

- 1 The assembly of components can take several forms to produce a given length of a hydraulic bracing frame leg (see Appendix C).
- 2 A hydraulic bracing leg is usually formed from a number of components and may also have a significant resistance in one direction of action.

1.4.5 Characteristic bending resistance of the inner tube of an adjustable leg ($R_{\text{KB,RI}}$)

Resistance of the inner tube of an adjustable telescopic hydraulic bracing frame leg.

1.4.6 Characteristic bending resistance of the main section of a leg (R_{KB1})

Resistance of the main section of a hydraulic bracing frame leg.

1.4.7 Characteristic bending resistance of the outer tube of an adjustable leg ($R_{KB,RO}$)

Resistance of the outer tube of an adjustable telescopic hydraulic bracing frame leg.

1.4.8 Characteristic bending resistance on the compressive side of a joint to an extension leg $(R_{\rm KB,JC})$

Resistance of the compressive side of a hydraulic bracing leg under the arrangement of loading given in Figure 3.1.

1.4.9 Characteristic bending resistance on the tension side of a joint to an extension leg $(R_{\text{KB},\text{JT}})$

Resistance of the tensile side of a hydraulic bracing leg under the arrangement of loading given in Figure 3.1.

1.4.10 Characteristic compressive failure pressure $(F_{\rm KC})$

Internal pressure at which compression failure occurs in a ram when extended to approximately 10% of its possible range.

1.4.11 Characteristic minimum bending resistance (R_{KB})

Bending resistance of a hydraulic bracing frame leg, soldier rail or a waler rail when assembled in the most onerous configuration.

1.4.12 Characteristic return failure pressure (F_{TA})

Internal return pressure in a double acting ram at failure of the ram.

NOTE: Clause 1.4.10 defines cylinder assembly failure pressure of a ram whereas Clause 1.4.1 defines the characteristic compression resistance of the complete ram with the ram leg fully extended, which takes into account ram leg buckling.

1.4.13 Competent person

A person who has acquired through training, qualification, experience or a combination of these, the knowledge and skill enabling that person to correctly perform the required task.

1.4.14 Cylinder end block

Component that terminates the cylinder tube and provides a connection for attaching hydraulic fittings and isolation valves and connection points to the surrounding structure (see Figures 1.1, 1.2 and 1.3).

1.4.15 Cylinder tube

Outer cylinder of the ram that resists the internal pressure and provides the outer sealing surface to the piston (see Figures 1.1, 1.2 and 1.3).

1.4.16 Double acting ram

Hydraulic ram that both extends and retracts under hydraulic pressure (see Figure 1.3).

NOTE: These rams primarily take compressive loads but also have a tensile capacity.

1.4.17 Extension leg for hydraulic bracing frame leg

Component that is either fixed or mechanically adjustable to extend a hydraulic bracing frame leg (see Figure 1.8).

NOTE: The joint between the component and its parent has a moment capacity.