AS 5100.5 Supplement 1-2008

Bridge design—Concrete—Commentary (Supplement to AS 5100.5—2004)

AUSTRALASIAN RAILWAY ASSOCIATION INC

This Australian Standard Supplement was prepared by Committee BD-090, Bridge Design. It was approved on behalf of the Council of Standards Australia on 23 May 2008. This Supplement was published on 21 August 2008.

The following are represented on Committee BD-090:

- Association of Consulting Engineers Australia
- Australasian Railway Association
- AUSTROADS
- Bureau of Steel Manufacturers of Australia
- Cement Concrete & Aggregates Australia—Cement
- Engineers Australia
- Queensland University of Technology
- Steel Reinforcement Institute of Australia
- University of Western Sydney

Standards Australia wishes to acknowledge the participation of the expert individuals that contributed to the development of this Standard through their representation on the Committee.

Keeping Standards up-to-date

Australian Standards® are living documents that reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued.

Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments that may have been published since the Standard was published.

Detailed information about Australian Standards, drafts, amendments and new projects can be found by visiting **www.standards.org.au**

Standards Australia welcomes suggestions for improvements, and encourages readers to notify us immediately of any apparent inaccuracies or ambiguities. Contact us via email at **mail@standards.org.au**, or write to Standards Australia, GPO Box 476, Sydney, NSW 2001.

AS 5100.5 Supplement 1—2008

Bridge design—Concrete—Commentary (Supplement to AS 5100.5—2004)

Originated as HB 77.5 Supp 1—1996. Revised and designated as AS 5100.5 Supp 1—2008.

COPYRIGHT

© Standards Australia

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher.

Published by Standards Australia GPO Box 476, Sydney, NSW 2001, Australia ISBN 0 7337 8871 8

PREFACE

This Commentary was prepared by the Standards Australia Committee BD-090, Bridge Design, to supersede HB 77.5 Supp 1, Australian Bridge Design Code—Concrete— Commentary (Supplement to SAA HB 77.5—1996).

The objective of this Commentary is to provide users with background information and guidance to AS 5100.5.

The Standard and Commentary are intended for use by bridge design professionals with demonstrated engineering competence in their field.

In this Commentary, AS 5100.5–2004 is referred as 'the Standard'.

The clause numbers and titles used in this Commentary are the same as those in AS 5100.5, except that they are prefixed by the letter 'C'. To avoid possible confusion between the Commentary and the Standard, a Commentary clause is referred to as 'Clause C.....' in accordance with Standards Australia policy.

Page

CONTENTS

SECTIO	N C1 SCOPE AND GENERAL	
C1.1	SCOPE AND APPLICATION	7
C1.2	REFERENCED DOCUMENTS	
C1.3	DEFINITIONS	
C1.4	NOTATION	
C1 5	USE OF ALTERNATIVE MATERIALS OR METHODS	8
C1.6	DESIGN	8
C1.7	MATERIALS AND CONSTRUCTION REQUIREMENT	
0117		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SECTIO	N C2 DESIGN REQUIREMENTS AND PROCEDURES	
C2.1	DESIGN REQUIREMENTS	10
C2.2	STRENGTH	10
C2.3	DURABILITY	11
C2.4	FIRE RESISTANCE	
C2.5	FATIGUE	11
C2.6	DESIGN FOR STABILITY	13
$C^{2.0}$	DEFI ECTIONS OF BEAMS AND SLABS	
$C^{2.7}$	CRACKING	13 14
C2.0	VIRPATION	····· 17
C2.9	DESIGN FOR STRENGTH AND SERVICEABILITY	
C2.10	BV PROTOTVPE TESTING	14
C2 11	OTHED DESIGN DEGLIDEMENTS	14 1 <i>4</i>
C2.11	OTHER DESIGN REQUIREMENTS	
SECTION SERVIC	N C3 LOADS AND LOAD COMBINATIONS FOR STABILITY, STRENGT EABILITY	H AND
C3.1	LOADS AND OTHER ACTIONS	16
C3.2	LOAD COMBINATIONS	16
SECTIO	N C4 DESIGN FOR DURABILITY	
C4.1	APPLICATION	17
C4.2	DESIGN FOR DURABILITY	18
C4.3	EXPOSURE CLASSIFICATION	20
C4.4	MEMBERS NOT CONTAINING MATERIAL REQUIRING PROTECTION.	22
C4.5	EXPOSURE CLASSIFICATIONS A, B1, B2 AND C	22
C4.6	EXPOSURE CLASSIFICATION U	23
C4.7	ABRASION	
C4.8	FREEZING AND THAWING	24
C4.9	CHEMICAL CONTENT IN CONCRETE	25
C4.10	COVER TO REINFORCING STEEL AND TENDONS	
C4.11	PROVISIONS FOR STRAY CURRENT CORROSION	
SECTIO	N C5 DESIGN FOR FIRE RESISTANCE	30
GEOTIO		
SECTIO	N CO DESIGN PROPERTIES OF MATERIALS	21
C6.1	PROPERTIES OF CONCRETE	
C6.2	PROPERTIES OF REINFORCEMENT	44
C6.3	PROPERTIES OF TENDONS	46
C6.4	LOSS OF PRESTRESS IN TENDON	48

SECTIO	N C7 METHODS OF STRUCTURAL ANALYSIS	
C7.1	GENERAL	54
C7.2	LINEAR ELASTIC ANALYSIS	54
C7.3	ELASTIC ANALYSIS OF FRAMES INCORPORATING	
	SECONDARY BENDING MOMENTS	59
C7.4	RIGOROUS STRUCTURAL ANALYSIS	59
C7.5	PLASTIC METHODS OF ANALYSIS FOR SLABS	60
C7.6	PLASTIC METHODS OF ANALYSIS OF FRAMES	60
C7.7	SEISMIC ANALYSIS METHODS	61
SECTIO	N C8 DESIGN OF BEAMS FOR STRENGTH AND SERVICEABILITY	
C8.1	STRENGTH OF BEAMS IN BENDING	64
C8.2	STRENGTH OF BEAMS IN SHEAR	68
C8.3	STRENGTH OF BEAMS IN TORSION	75
C8.4	LONGITUDINAL SHEAR IN BEAMS	78
C8.5	DEFLECTION OF BEAMS	80
C8.6	CRACK CONTROL OF BEAMS	82
C8.7	VIBRATION OF BEAMS	84
C8.8	PROPERTIES OF BEAMS	84
C8.9	SLENDERNESS LIMITS FOR BEAMS	84
SECTIO	N C9 DESIGN OF SLABS FOR STRENGTH AND SERVICEABILITY	
C9.1	STRENGTH OF SLABS IN BENDING	87
C9.2	STRENGTH OF SLABS IN SHEAR	87
C9.3	DEFLECTION OF SLABS	88
C9.4	CRACK CONTROL OF SLABS	88
C9.5	VIBRATION OF SLABS	89
C9.6	MOMENT RESISTING WIDTH FOR ONE-WAY SLABS SUPPORTING	
	CONCENTRATED LOADS	89
C9.7	LONGITUDINAL SHEAR IN SLABS	89
C9.8	FATIGUE OF SLABS	89
SECTIO	N C10 DESIGN OF COLUMNS AND TENSION MEMBERS FOR STRENGTH	ł
AND SE	RVICEABILITY	
C10.1	GENERAL	91
C10.2	2 DESIGN PROCEDURES	91
C10.3	DESIGN OF SHORT COLUMNS	96
C10.4	DESIGN OF SLENDER COLUMNS	97
C10.5	SLENDERNESS	101
C10.6	5 STRENGTH OF COLUMNS IN COMBINED BENDING AND COMPRESSIO	ON103
C10.7	REINFORCEMENT FOR COLUMNS	106
C10.8	DESIGN OF TENSION MEMBERS	108
SECTIO	N C11 DESIGN OF WALLS	
C11.1	APPLICATION	111
C11.2	DESIGN PROCEDURES	111
C11.3	BRACING OF WALLS	111
C11.4	SIMPLIFIED DESIGN METHOD FOR BRACED WALLS SUBJECT TO	
	VERTICAL IN-PLANE LOADS ONLY	111
C11.5	DESIGN OF WALLS FOR IN-PLANE HORIZONTAL FORCES	111
C11.6	REINFORCEMENT FOR WALLS	111

SURFAC	N C12 DESIGN OF NON-FLEXURAL MEMBERS, END ZONES AND BEARING	Ĵ
C12 1	DESIGN OF NON-FLEXURAL MEMBERS	113
C12.1	PRESTRESSING ANCHORAGE ZONES	117
C12.2	DEADNIC SUDEACES	120
C12.3	DEARING SURFACES	120
SECTIO TENDO	N C13 STRESS DEVELOPMENT AND SPLICING OF REINFORCEMENT AND NS	
C13.1	STRESS DEVELOPMENT IN REINFORCEMENT	122
C13.2	SPLICING OF REINFORCEMENT.	126
C13.3	STRESS DEVELOPMENT IN TENDONS	127
C13.4	COUPLING OF TENDONS	128
SECTIO	N C14 JOINTS, EMBEDDED ITEMS FIXING AND CONNECTIONS	
C14.1	DESIGN OF JOINTS	129
C14.2	EMBEDDED ITEMS	130
C14.3	REOUIREMENTS FOR FIXINGS	130
C14.4	CONNECTIONS	131
SECTIO	N C15 PLAIN CONCRETE MEMBERS	
C15.1	APPLICATION	132
C15.2	DESIGN	132
C15.3	STRENGTH IN BENDING	132
C15.4	STRENGTH IN SHEAR	132
C15.5	STRENGTH IN AXIAL COMPRESSION	132
C15.6	STRENGTH IN COMBINED BENDING AND COMPRESSION	132
C15.7	REINFORCEMENT AND EMBEDDED ITEMS	132
SECTIO	N C16 MATERIAL AND CONSTRUCTION REQUIREMENTS	
C16.1	MATERIAL AND CONSTRUCTION REQUIREMENTS FOR CONCRETE	
	AND GROUT	133
C16.2	MATERIAL AND CONSTRUCTION REQUIREMENTS FOR REINFORCING	
	STEEL	136
C16.3	MATERIAL AND CONSTRUCTION REQUIREMENTS FOR PRESTRESSING	
	DUCTS, ANCHORAGES AND TENDONS	138
C16.4	CONSTRUCTION REQUIREMENTS FOR JOINTS AND EMBEDDED ITEMS	141
C16.5	TOLERANCES FOR STRUCTURES AND MEMBERS	141
C16.6	FORMWORK	143
SECTIO	N C17 TESTING OF MEMBERS AND STRUCTURES	
C17.1	GENERAL	145
C17.2	TESTING OF MEMBERS	145
C17.3	PROOF TESTING	145
C17.4	PROTOTYPE TESTING	146
C17.5	QUALITY CONTROL	147
C17.6	TESTING FOR STRENGTH OF HARDENED CONCRETE IN PLACE	147
APPENI	DICES	
CA	REFERENCED DOCUMENTS	150
CB	DESIGN OF SEGMENTAL CONCRETE BRIDGES	151
CC	BEAM STABILITY DURING ERECTION	153
CD	SUSPENSION REINFORCEMENT DESIGN PROCEDURES	154
CE	COMPOSITE CONCRETE MEMBERS DESIGN PROCEDURES	155

		Page
CF	BOX GIRDERS	156
CG	END ZONES FOR PRESTRESSING ANCHORAGES	157
CH	STANDARD PRECAST PRESTRESSED CONCRETE GIRDER	158
CI	REFERENCES	159

STANDARDS AUSTRALIA

Australian Standard Bridge design—Concrete—Commentary (Supplement to AS 5100.5—2004)

SECTION C1 SCOPE AND GENERAL

C1.1 SCOPE AND APPLICATION

C1.1.1 Scope

The Standard sets out minimum provisions and criteria. Design engineers should always consider whether or not these will be sufficient for their particular structure, both from the point of view whether the given criteria are stringent enough and whether or not other considerations, not mentioned therein, need to be taken into account.

The provisions have been formulated on the basis of typical bridge structures. Design engineers are alerted to the fact that they should exercise engineering judgement when applying them to other structures. For example it may be appropriate to use the criteria for concrete properties for the concrete in a tunnel but the criteria for fire resistance may not be used, as the type of fire, fire load and structure behaviour under fire may be quite different.

In the preparation of a Standard such as this, a certain level of knowledge and competence is assumed. It was assumed that the predominant users of the Standard would be professionally qualified civil or structural engineers experienced in the design of concrete bridge structures, or equally qualified but less experienced persons working under their guidance. It is intended that the Standard be applied and interpreted primarily by such persons. It should be noted that the Standard is neither: a textbook, a design handbook nor a Guide to good practice. Users should consult other references for this type of information.

C1.1.2 Application

The lower limit on the characteristic compressive strength of concrete has been imposed because strengths less than this are not considered suitable for structural use. The upper limit has been imposed taking into account test data available on the behaviour of members made using higher strength concrete. It should be noted that within the Standard, concrete properties and design equations vary depending on the strength adopted.

Concretes made from naturally occurring Australian coarse aggregates have surface-dry densities falling in the range 2100 kg/m^3 to 2800 kg/m^3 . Lightweight structural concretes in Australia generally use naturally occurring sands combined with manufactured lightweight coarse aggregates, for which the surface-dry density is seldom less than 1800 kg/m^3 . Density limits have been set accordingly.

The reinforcing steel Standard AS/NZS 4671 refers to three ductility classes of which two Class L and N are commonly available in Australia. The third, Class E, is formulated to meet the requirements for earthquake design in New Zealand and is normally not available in Australia. Thus provisions are given for only the two former classes.

The provisions of the Standard may be used for the design of structures with unbonded tendons, provided the design engineer recognizes the inherent differences in the behaviour of these structures and those with bonded tendons under both serviceability and ultimate limit states.

www.standards.org.au

The Standards listed in Appendix A are subject to revision from time to time. A check should be made with Standards Australia (see its website www.standards.org.au) as to the currency of any Standard referenced in the text.

C1.3 DEFINITIONS

Technical definitions are provided in Clause 1.3 of the Standard. Some technical definitions that are applicable to only one Section are given in the Section in which they are relevant.

C1.4 NOTATION

The basis of the notation is generally in accordance with ISO 3898, *Bases for Design of Structures—Notations—General Symbols*. Standards Australia's policy is to use ISO recommendations on notation, wherever practicable, in structural design Standards such as AS/NZS 1170, AS 2327, AS 3600, AS 4100 and AS/NZS 4600.

The notation used in the Standard is consistent with AS 3600. This may result in some of the notation having a different definition to that of other parts of AS 5100.

C1.5 USE OF ALTERNATIVE MATERIALS OR METHODS

C1.5.1 General

(No Commentary)

C1.5.2 Use of other materials or methods

Where alternative materials or methods are to be used, the design engineer is required to seek approval from the appropriate authority.

C1.5.3 Existing structures

The evaluation of an existing structure from drawings should be undertaken with caution as the size and condition of the members and materials together with the properties of the materials may be significantly different to those indicated in the drawings. Actual bridge details and condition should be clarified by field inspection (see AS 5100.7 (Ref. 1)).

C1.5.4 Lightweight structural concrete

Lightweight structural concrete should be limited to material made with lightweight coarse and normal weight fine aggregates.

If lightweight structural concrete is to be used, due account should be taken of the variation of concrete properties from normal weight concrete and the effect on serviceability limit states.

C1.6 DESIGN

The information applicable to most members may be shown in only one of the drawings, usually the first sheet, or cited in the project specification as appropriate.

C1.6.1 Design data

The relevant requirements from AS 5100.2 should be included in the drawings.

C1.6.2 Design details

The class of formwork required for the specified surface finish should be as required by the authority. If the class of formwork is not specified, reference should be made to AS 3610.

Where a casting procedure has been assumed in the design process, that casting procedure should be shown in the drawings.