# Australian/New Zealand Standard™

# Composite structures—Composite steel-concrete construction in buildings





#### AS/NZS 2327:2017

This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee BD-032, Composite Construction. It was approved on behalf of the Council of Standards Australia on 25 October 2017 and by the New Zealand Standards Approval Board on 6 November 2017. This Standard was published on 20 December 2017.

The following are represented on Committee BD-032:

Australian Building Codes Board Australian Industry Group Australian Steel Institute Bureau of Steel Manufacturers of Australia Cement Concrete and Aggregates Australia—Concrete Consult Australia Engineers Australia Ministry of Business, Innovation and Employment, NZ National Precast Concrete Association Australia New Zealand Heavy Engineering Research Association Steel Construction New Zealand Steel Reinforcement Institute of Australia Structural Engineering Society, New Zealand University of New South Wales University of Sydney

#### Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Site at www.standards.org.au or Standards New Zealand web site at www.standards.govt.nz and looking up the relevant Standard in the online catalogue.

For more frequent listings or notification of revisions, amendments and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national Standards organization.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of Standards Australia or the New Zealand Standards Executive at the address shown on the back cover.

This Standard was issued in draft form for comment as DR AS/NZS 2327:2016.

AS/NZS 2327:2017 (Incorporating Amendment No. 1)

# Australian/New Zealand Standard<sup>™</sup>

# Composite structures—Composite steel-concrete construction in buildings

Originated in Australia as AS 1480 Supplement 1—1974. Previous edition AS 2327.1—2003. Jointly revised and redesignated as AS/NZS 2327:2017. Reissued incorporating Amendment No. 1 (June 2020).

COPYRIGHT

© Standards Australia Limited

© The Crown in right of New Zealand, administered by the New Zealand Standards Executive

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher, unless otherwise permitted under the Copyright Act 1968 (Australia) or the Copyright Act 1994 (New Zealand).

ISBN 978 1 76035 970 6

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Technical Committee BD-032, Composite Construction, to supersede AS 2327.1—2003 Composite structures, Part 1—Simply supported beams.

This Standard incorporates Amendment No. 1 (June 2020). The changes required by the Amendment are indicated in the text by a marginal bar and amendment number against the clause, note, table, figure or part thereof affected.

The objective of this Standard is to set out minimum requirements for the design, detailing and construction of composite steel-concrete members (beams, columns, slabs, joints) in buildings. The Standard is to be used by structural engineers when designing steel framed building structures.

This revision incorporates a number of technical and editorial changes, as follows:

- (a) Changes to the strength of concrete, raising the maximum compressive cylinder strength to 100 MPa.
- (b) Changes to the yield strength of steel, raising the maximum tensile yield strength to 690 MPa.
- (c) Provisions for the design of composite slabs using profiled steel sheeting.
- (d) Provisions for the design of composite beams.
- (e) Provisions for the design of composite columns.
- (f) Provisions for the design of composite joints.
- (g) Provisions for system behaviour floor design.
- (h) Provisions for fire design.
- (i) Provisions for earthquake design.

Statements expressed in mandatory terms in Notes to Tables are deemed to be requirements of this Standard.

The terms 'normative' and 'informative' have been used in this Standard to define the application of the appendices to which they apply. A 'normative' appendix is an integral part of a Standard, whereas an 'informative' appendix is only for information and guidance.

# CONTENTS

Page

| 1.1       APPLICATION       5         1.2       MATERIALS.       16         1.3       CONSTRUCTION       17         1.4       GENERAL DESIGN REQUIREMENTS.       18         1.5       ACTIONS AND DESIGN SITUATIONS       20         1.6       METHODS OF STRUCTURAL ANALYSIS.       21         1.7       DESIGN OF STRUCTURAL ANALYSIS.       21         1.7       DESIGN OF COMPOSITE SLABS       23         2.1       GENERAL       23         2.2       DETAILING PROVISIONS       25         2.3       ACTIONS AND ACTION EFFECTS.       27         2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS.       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS.       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS.       30         2.8       VERIFICATION OF COMPOSITE BEAMS       31         3.1       GENERAL       42       3.3         2.2       STEEL BEAM REQUIREMEN                                                                                                                | SECTIO      | N 1 GENERAL REQUIREMENTS                                    |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------|-----------|
| 1.2       MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1         | APPLICATION                                                 | 5         |
| 1.3       CONSTRUCTION       17         1.4       GENERAL DESIGN REQUIREMENTS       18         1.5       ACTIONS AND DESIGN SITUATIONS       20         1.6       METHODS OF STRUCTURAL ANALYSIS       21         1.7       DESIGN OF COMPOSITE SLABS       22         SECTION 2       DESIGN OF COMPOSITE SLABS       23         2.1       GENERAL       23         2.2       DETAILING PROVISIONS       25         2.3       ACTIONS AND ACTION EFFECTS       27         2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.8       VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT STATES       30         2.8       VERIFICATION OF COMPOSITE BEAMS       30         2.8       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAMS       41         3.1       GENERAL       42         3.3                                                                                                          | 1.2         | MATERIALS                                                   | 16        |
| 1.4       GENERAL DESIGN REQUIREMENTS.       18         1.5       ACTIONS AND DESIGN SITUATIONS       20         1.6       METHODS OF STRUCTURAL ANALYSIS.       21         1.7       DESIGN ASSISTED BY TESTING.       22         SECTION 2       DESIGN OF COMPOSITE SLABS       23         2.1       GENERAL       23         2.2       DETAILING PROVISIONS       25         2.3       ACTIONS AND ACTION EFFECTS.       27         2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR       101         1.11       TIMATE LIMIT STATES       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.8       VERIFICATION OF COMPOSITE BEAMS       31         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       42         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF COMPOSITE NOF AC                                                                                                       | 1.3         | CONSTRUCTION                                                | 17        |
| 1.5       ACTIONS AND DESIGN SITUATIONS       20         1.6       METHODS OF STRUCTURAL ANALYSIS       21         1.7       DESIGN ASSISTED BY TESTING       22         SECTION 2       DESIGN OF COMPOSITE SLABS       23         2.1       GENERAL       23         2.2       DESIGN OF COMPOSITE SLABS       25         2.3       ACTIONS AND ACTION EFFECTS.       27         2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.8       VERIFICATION OF COMPOSITE BLABS       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS.       30         2.8       VERIFICATION OF COMPOSITE BLABS       30         2.9       VERIFICATION OF COMPOSITE BEAMS       31         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       GENERAL       42         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAMS </td <td>1.4</td> <td>GENERAL DESIGN REQUIREMENTS</td> <td> 18</td>                                     | 1.4         | GENERAL DESIGN REQUIREMENTS                                 | 18        |
| 1.6       METHODS OF STRUCTURAL ANALYSIS.       21         1.7       DESIGN ASSISTED BY TESTING       22         SECTION 2       DESIGN OF COMPOSITE SLABS       23         2.1       GENERAL       23         2.2       DETAILING PROVISIONS       25         2.3       ACTIONS AND ACTION EFFECTS       27         2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL       310         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR SERVICEABILITY LIMIT       31         STATES       38       34       SECTION 3       DESIGN OF COMPOSITE BEAMS         3.1       GENERAL       42       32       STEEL BEAM REQUIREMENTS       42         3.3       STEEL BEAM REQUIREMENTS       42       33       42         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAMS       44       3.5         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44       3.5         3                                                                                       | 1.5         | ACTIONS AND DESIGN SITUATIONS                               | 20        |
| 1.7       DESIGN ASSISTED BY TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6         | METHODS OF STRUCTURAL ANALYSIS                              | 21        |
| SECTION 2 DESIGN OF COMPOSITE SLABS<br>2.1 GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7         | DESIGN ASSISTED BY TESTING                                  | 22        |
| SECTION 2 DESIGN OF COMPOSITE SLABS       23         2.1 GENERAL       23         2.2 DETAILING PROVISIONS       25         2.3 ACTIONS AND ACTION EFFECTS       27         2.4 ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5 VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR       30         2.6 SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL       30         2.7 ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.8 VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT       31         2.9 STEEL BEAM REQUIREMENTS       38         SECTION 3 DESIGN OF COMPOSITE BEAMS       31         3.1 GENERAL       42         3.2 STEEL BEAM REQUIREMENTS       42         3.3 CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4 EFFECTIVE SECTION OF A COMPOSITE BEAMS       44         3.5 ULTIMATE LIMIT STATE       51         3.6 DESIGN OF SHEAR CONNECTORS       62         3.7 COVER AND CONCRETING       77         3.8 TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9 DESIGN OF WEB PENETRATIONS       87         3.10 DESIGN FOR SERVICEABILITY       87         3.11 FATIGUE       92         SECTION 4 DESIGN OF COMPOSITE COLUMNS       93 <td>1.7</td> <td></td> <td></td>                  | 1.7         |                                                             |           |
| 2.1       GENERAL       23         2.2       DETAILING PROVISIONS       25         2.3       ACTIONS AND ACTION EFFECTS.       27         2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR<br>ULTIMATE LIMIT STATES.       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL<br>SHEETING USED AS FORMWORK       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS.       30         2.8       VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT<br>STATES       30         2.8       VERIFICATION OF COMPOSITE BEAMS       31         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF COMPOSITE COLUMNS       71         3.11       FATIGUE       92 </td <td>SECTIO</td> <td>N 2 DESIGN OF COMPOSITE SLABS</td> <td></td> | SECTIO      | N 2 DESIGN OF COMPOSITE SLABS                               |           |
| 2.2       DETAILING PROVISIONS       25         2.3       ACTIONS AND ACTION EFFECTS       27         2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR<br>ULTIMATE LIMIT STATES       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL<br>SHEETING USED AS FORMWORK       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.8       VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT<br>STATES       38         SECTION 3       DESIGN OF COMPOSITE BEAMS       31         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF SUPPORTING       77         3.10       DESIGN OF COMPOSITE COLUMNS       92         4.1       COMPOSITE COMPRESSION MEMBE                                                  | 2.1         | GENERAL                                                     | 23        |
| 2.3       ACTIONS AND ACTION EFFECTS.       27         2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR<br>ULTIMATE LIMIT STATES.       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL<br>SHEETING USED AS FORMWORK       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS.       30         2.8       VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT<br>STATES       38         SECTION 3       DESIGN OF COMPOSITE BEAMS       31         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.1       FATIS       87         3.2       RESTINAWERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PEN                                                  | 2.2         | DETAILING PROVISIONS                                        | 25        |
| 2.4       ANALYSIS FOR INTERNAL FORCES AND MOMENTS       28         2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR<br>ULTIMATE LIMIT STATES       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL<br>SHEETING USED AS FORMWORK       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.8       VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT<br>STATES       38         SECTION 3       DESIGN OF COMPOSITE BEAMS       42         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       44         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF SERVICEABILITY       87         3.10       DESIGN OF COMPOSITE COLUMNS       41         4.1       COMPOSITE COMPRESSION MEMBERS                                                            | 2.3         | ACTIONS AND ACTION EFFECTS                                  | 27        |
| 2.5       VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR<br>ULTIMATE LIMIT STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4         | ANALYSIS FOR INTERNAL FORCES AND MOMENTS                    | 28        |
| ULTIMATE LIMIT STATES       30         2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL         SHEETING USED AS FORMWORK       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS         30       2.8         VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT         STATES       38         SECTION 3       DESIGN OF COMPOSITE BEAMS         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN OF COMPOSITE COLUMNS       93         4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COLUMNS       106         4.3       DETAILING PROVISIONS       106         4.4       VERIFICATION OF COMPOSITE COLUM                                                                                                              | 2.5         | VERIFICATION OF PROFILED STEEL SHEETING AS FORMWORK FOR     |           |
| 2.6       SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL         SHEETING USED AS FORMWORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | ULTIMATE LIMIT STATES                                       | 30        |
| SHEETING USED AS FORMWORK       30         2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.8       VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT       37         STATES       38         SECTION 3       DESIGN OF COMPOSITE BEAMS       42         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN OF COMPOSITE COLUMNS       4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COLUMNS       106       4.3       DETAILING PROVISIONS       106         4.3       DETAILING PROVISIONS       108       4.4       VERIFICATION OF COMPOSITE COLUMNS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       ST                                                                              | 2.6         | SERVICEABILITY LIMIT STATE REQUIREMENTS FOR PROFILED STEEL  |           |
| 2.7       ULTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS       30         2.8       VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT<br>STATES       38         SECTION 3       DESIGN OF COMPOSITE BEAMS       31         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN OF COMPOSITE COLUMNS       92         SECTION 4       DESIGN OF COMPOSITE COLUMNS       106         4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COLUMNS       106         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       STATES         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       109         4.5       SECOND ORDER EFFECTS       110 <td></td> <td>SHEETING USED AS FORMWORK</td> <td>30</td>                     |             | SHEETING USED AS FORMWORK                                   | 30        |
| 2.8       VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT<br>STATES       38         SECTION 3       DESIGN OF COMPOSITE BEAMS       42         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN FOR SERVICEABILITY       87         3.11       FATIGUE       92         SECTION 4       DESIGN OF COMPOSITE COLUMNS       10         4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COLUMNS       106         4.3       DETAILING PROVISIONS       106         4.3       DETAILING PROVISIONS       106         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       STATES         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICE                                                                                                    | 27          | UILTIMATE LIMIT STATE REQUIREMENTS FOR COMPOSITE SLABS      | 30        |
| 2.3       VIAINTENTION OF COMPOSITE DEADS FOR SERVICE ABLETT FEMILY         STATES       38         SECTION 3       DESIGN OF COMPOSITE BEAMS         3.1       GENERAL       42         3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN OF COMPOSITE COLUMNS       87         4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COLUMNS       106         4.3       DETAILING PROVISIONS       106         4.3       DETAILING PROVISIONS       106         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       STATES         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       STATES         4.5       SECOND ORDER EFFECTS       110         SEC                                                                                                               | 2.7         | VERIFICATION OF COMPOSITE SLABS FOR SERVICEABILITY LIMIT    |           |
| SECTION 3 DESIGN OF COMPOSITE BEAMS         3.1 GENERAL       42         3.2 STEEL BEAM REQUIREMENTS       42         3.3 CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4 EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5 ULTIMATE LIMIT STATE       51         3.6 DESIGN OF SHEAR CONNECTORS       62         3.7 COVER AND CONCRETING       77         3.8 TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9 DESIGN OF WEB PENETRATIONS       87         3.10 DESIGN FOR SERVICEABILITY       87         3.11 FATIGUE       92         SECTION 4 DESIGN OF COMPOSITE COLUMNS       93         4.1 COMPOSITE COMPRESSION MEMBERS       93         4.2 RESISTANCE OF COMPOSITE COLUMNS       106         4.3 DETAILING PROVISIONS       108         4.4 VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       109         4.5 SECOND ORDER EFFECTS       110         SECTION 5 DESIGN OF COMPOSITE JOINTS       109         4.5 SECOND ORDER EFFECTS       110                                                                                                                                                                                                                                                                                        | 2.0         | STATES                                                      | 38        |
| SECTION 3 DESIGN OF COMPOSITE BEAMS<br>3.1 GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | STATLS                                                      |           |
| 3.1GENERAL423.2STEEL BEAM REQUIREMENTS423.3CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS433.4EFFECTIVE SECTION OF A COMPOSITE BEAM443.5ULTIMATE LIMIT STATE513.6DESIGN OF SHEAR CONNECTORS623.7COVER AND CONCRETING773.8TRANSVERSE REINFORCEMENT IN CONCRETE SLABS783.9DESIGN OF WEB PENETRATIONS873.10DESIGN FOR SERVICEABILITY873.11FATIGUE92SECTION 4DESIGN OF COMPOSITE COLUMNS1064.1COMPOSITE COMPRESSION MEMBERS934.2RESISTANCE OF COMPOSITE COLUMNS1064.3DETAILING PROVISIONS1084.4VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT<br>STATES1094.5SECOND ORDER EFFECTS110SECTION 5DESIGN OF COMPOSITE JOINTS112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SECTIO      | N 3 DESIGN OF COMPOSITE BEAMS                               |           |
| 3.2       STEEL BEAM REQUIREMENTS       42         3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS       43         3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM       44         3.5       ULTIMATE LIMIT STATE       51         3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN FOR SERVICEABILITY       87         3.11       FATIGUE       92         SECTION 4       DESIGN OF COMPOSITE COLUMNS       93         4.2       RESISTANCE OF COMPOSITE COLUMNS       106         4.3       DETAILING PROVISIONS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                        | 3.1         | GENERAL                                                     | 42        |
| 3.3       CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.2         | STEEL BEAM REQUIREMENTS                                     | 42        |
| 3.4       EFFECTIVE SECTION OF A COMPOSITE BEAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33          | CALCULATION OF DESIGN ACTION EFFECTS DUE TO DESIGN LOADS    | 43        |
| 3.1       DITION OF NEODINATE DEFINITION         3.5       ULTIMATE LIMIT STATE         3.6       DESIGN OF SHEAR CONNECTORS         3.7       COVER AND CONCRETING         3.7       COVER AND CONCRETING         3.7       COVER AND CONCRETING         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS         78       3.9         DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN FOR SERVICEABILITY         87       3.11         FATIGUE       92         SECTION 4       DESIGN OF COMPOSITE COLUMNS         4.1       COMPOSITE COMPRESSION MEMBERS         93       4.2         RESISTANCE OF COMPOSITE COLUMNS         4.1       COMPOSITE COMPRESSION MEMBERS SUBJECTED TO         COMBINED ACTIONS       106         4.3       DETAILING PROVISIONS         108       4.4         VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT         STATES       109         4.5       SECOND ORDER EFFECTS         110       SECTION 5         5.1       SCOPE                                                                                                                                                                                                                                                                                                                         | 3.4         | EFFECTIVE SECTION OF A COMPOSITE BEAM                       | 15        |
| 3.6       DESIGN OF SHEAR CONNECTORS       62         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN FOR SERVICEABILITY       87         3.11       FATIGUE       92         SECTION 4       DESIGN OF COMPOSITE COLUMNS       93         4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COMPRESSION MEMBERS SUBJECTED TO COMBINED ACTIONS       106         4.3       DETAILING PROVISIONS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT STATES       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 5         | LII TIMATE I IMIT STATE                                     | 51        |
| 3.6       DESIGN OF STIERAR CONTRECTORS       02         3.7       COVER AND CONCRETING       77         3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS       78         3.9       DESIGN OF WEB PENETRATIONS       87         3.10       DESIGN FOR SERVICEABILITY       87         3.11       FATIGUE       87         3.11       FATIGUE       87         3.11       FATIGUE       92         SECTION 4       DESIGN OF COMPOSITE COLUMNS       93         4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COMPRESSION MEMBERS SUBJECTED TO COMBINED ACTIONS       106         4.3       DETAILING PROVISIONS       106         4.3       DETAILING PROVISIONS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT STATES       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       110                                                                                                                                                                                                                                                                                                                                                                                 | 3.6         | DESIGN OF SHEAR CONNECTORS                                  | 62        |
| 3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SLABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0         | COVER AND CONCRETING                                        | 02<br>77  |
| 3.8       TRANSVERSE REINFORCEMENT IN CONCRETE SEABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8         | TDANSVEDSE DEINEODCEMENT IN CONCRETE SLADS                  | / /<br>78 |
| 3.9       DESIGN OF WEB FEREIRATIONS       87         3.10       DESIGN FOR SERVICEABILITY       87         3.11       FATIGUE       92         SECTION 4       DESIGN OF COMPOSITE COLUMNS       92         4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COMPRESSION MEMBERS SUBJECTED TO<br>COMBINED ACTIONS       106         4.3       DETAILING PROVISIONS       106         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT<br>STATES       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0         | DESIGN OF WED DENETDATIONS                                  | /0        |
| 3.10       DESIGN FOR SERVICEABILITY       87         3.11       FATIGUE       92         SECTION 4       DESIGN OF COMPOSITE COLUMNS       92         4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COMPRESSION MEMBERS SUBJECTED TO<br>COMBINED ACTIONS       93         4.3       DETAILING PROVISIONS       106         4.3       DETAILING PROVISIONS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT<br>STATES       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.9<br>2.10 | DESIGN OF WED PENETRATIONS                                  | 0/        |
| 3.11       FATIGUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.10        | DESIGN FOR SERVICEABILITY                                   | 0/        |
| SECTION 4 DESIGN OF COMPOSITE COLUMNS 4.1 COMPOSITE COMPRESSION MEMBERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.11        | FATIGUE                                                     | 92        |
| 4.1       COMPOSITE COMPRESSION MEMBERS       93         4.2       RESISTANCE OF COMPOSITE COMPRESSION MEMBERS SUBJECTED TO<br>COMBINED ACTIONS       106         4.3       DETAILING PROVISIONS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT<br>STATES       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SECTIO      | N 4 DESIGN OF COMPOSITE COLUMNS                             |           |
| 4.1       COMINECTION RESIDENT RESIDENT REMERSION MEMBERS SUBJECTED TO         4.2       RESISTANCE OF COMPOSITE COMPRESSION MEMBERS SUBJECTED TO         COMBINED ACTIONS       106         4.3       DETAILING PROVISIONS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>4</u> 1  | COMPOSITE COMPRESSION MEMBERS                               | 93        |
| 4.2       RESISTANCE OF COMPOSITE COMPLETED TO         COMBINED ACTIONS       106         4.3       DETAILING PROVISIONS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       109         4.5       SECOND ORDER EFFECTS       100         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.1         | RESISTANCE OF COMPOSITE COMPRESSION MEMBERS SUBJECTED TO    | ) )       |
| 4.3       DETAILING PROVISIONS       100         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.2         | COMBINED ACTIONS                                            | 106       |
| 4.3       DETAILING PROVISIONS       108         4.4       VERIFICATION OF COMPOSITE COLUMNS FOR SERVICEABILITY LIMIT       109         4.5       SECOND ORDER EFFECTS       109         4.5       SECOND ORDER EFFECTS       110         SECTION 5       DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12          |                                                             | 100       |
| 4.4       VERIFICATION OF COMPOSITE COLUMINS FOR SERVICEABILITY LIMIT         STATES       109         4.5       SECOND ORDER EFFECTS         110       SECTION 5         DESIGN OF COMPOSITE JOINTS       112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5         | VEDIEICATION OF COMPOSITE COLUMNS FOR SERVICEADILITY LIMIT  | 108       |
| 4.5 SECOND ORDER EFFECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.4         | VERIFICATION OF COMPOSITE COLUMINS FOR SERVICEABILITY LIMIT | 100       |
| 4.5 SECOND ORDER EFFECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5         | STATES                                                      | 109       |
| SECTION 5 DESIGN OF COMPOSITE JOINTS<br>5.1 SCOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5         | SECOND ORDER EFFECTS                                        | 110       |
| 51 SCOPE 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SECTIO      | N 5 DESIGN OF COMPOSITE JOINTS                              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51          | SCOPE                                                       | 112       |
| 5.2 COMPONENT METHOD 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 2         | COMPONENT METHOD                                            | 114       |
| 5.2 ROTATIONAL STIFFNESS 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53          | ROTATIONAL STIFFNESS                                        | 116       |
| 5.4 FLEXURAL STRENGTH 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5<br>5.4  | FI FXURAL STRFNGTH                                          | 125       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | т           |                                                             | 120       |

F G

Η

Ι

| 5.5    | DUCTILITY                                              |        |
|--------|--------------------------------------------------------|--------|
| 5.6    | DETAILING OF REINFORCEMENT                             |        |
|        |                                                        |        |
| SECTIC | ON 6 DESIGN OF COMPOSITE FLOOR SYSTEMS                 | 100    |
| 6.1    | GENERAL.                                               |        |
| 6.2    | DEFLECTIONS                                            |        |
| 6.3    | CRACKING                                               |        |
| 6.4    | VIBRATIONS                                             | 136    |
| SECTIO | N 7 DESIGN FOR FIRE RESISTANCE                         |        |
| 7.1    | SCOPE                                                  | 142    |
| 7.2    | BASIS OF DESIGN                                        | 148    |
| 7.3    | MATERIAL PROPERTIES                                    | 150    |
| 7.4    | DESIGN PROCEDURES                                      | 161    |
| 7.5    | TABULATED DATA                                         | 167    |
| 7.6    | TEMPERATURE CALCULATIONS                               |        |
| 7.7    | SIMPLE STRUCTURAL CALCULATION METHODS                  |        |
| 7.8    | ADVANCED CALCULATION METHODS                           |        |
| 7.9    | CONSTRUCTIONAL DETAILS                                 |        |
|        |                                                        |        |
| SECTIO | N 8 DESIGN FOR EARTHQUAKE                              |        |
| 8.1    | SCOPE AND GENERAL                                      | 193    |
| 8.2    | GENERAL DESIGN AND ANALYSIS PHILOSOPHY                 | 193    |
| 8.3    | METHODS OF ANALYSIS AND DESIGN                         | 196    |
| 8.4    | MATERIAL REQUIREMENTS                                  | 197    |
| 8.5    | DESIGN AND DETAILING OF COMPOSITE MEMBERS              | 198    |
| 8.6    | JOINTS                                                 |        |
| 8.7    | COMPOSITE MOMENT-RESISTING FRAMED SEISMIC SYSTEMS      |        |
| 8.8    | COMPOSITE ECCENTRICALLY BRACED FRAMED SEISMIC RESISTI  | NG     |
|        | SYSTEMS                                                |        |
| 8.9    | COMPOSITE CONCENTRICALLY-BRACED FRAMED SEISMIC RESIS   | TING   |
|        | SYSTEMS                                                |        |
|        |                                                        |        |
| APPEN  | DICES                                                  |        |
| Α      | CONSTRUCTION STAGES AND MINIMUM CONSTRUCTION LOADS     |        |
| В      | INFORMATION FOR THE SERVICEABILITY LIMIT STATE         |        |
| С      | INFORMATION FOR THE ULTIMATE LIMIT STATE DESIGN OF COM | POSITE |
|        | AND NON-COMPOSITE BEAMS WITH WEB OPENINGS              |        |
| D      | LONGITUDINAL SHEAR RESISTANCE OF COMPOSITE SLABS       |        |
|        | USING THE <i>m-k</i> METHOD                            |        |
| Е      | FIRE TESTING OF COMPOSITE FLOOR SLABS                  |        |

4

# STANDARDS AUSTRALIA/STANDARDS NEW ZEALAND

# Australian/New Zealand Standard

# Composite structures—Composite steel-concrete construction in buildings

SECTION 1 GENERAL REQUIREMENTS

#### **1.1 APPLICATION**

# A1 **1.1.1 Scope and general**

This Standard sets out minimum requirements for the design, detailing and construction of composite steel-concrete members (beams, columns, slabs, joints) in buildings.

This Standard does not cover the design of composite beams and columns-

- (a) where the elements of the steel section are less than 3 mm thick or the value of the yield stress  $(f_y)$  assumed in design exceeds 690 MPa;
- (b) where the concrete characteristic compressive strength at 28 days is outside the range of 20 MPa to 120 MPa; or
  - (c) for road or railway bridges (see NOTE).
  - NOTE: For the design of composite bridge beams, reference should be made to AS/NZS 5100.6.

# **1.1.2** Normative references

The following normative documents are referred to in this Standard:

| AS             |                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1012           | Methods of testing concrete                                                                                                           |
| 1012.12.1      | Determination of mass per unit volume of hardened concrete—Rapid                                                                      |
| 1012.12.2      | Determination of mass per unit volume of hardened concrete—Water displacement method                                                  |
| 1110           | ISO metric hexagon bolts and screws—Product grades A and B (series)                                                                   |
| 1111           | ISO metric hexagon bolts and screws—Product grade C (series)                                                                          |
| 1112           | ISO metric hexagon nuts (series)                                                                                                      |
| 1163           | Cold-formed structural steel hollow sections                                                                                          |
| 1170           | Structural design actions                                                                                                             |
| 1170.4         | Part 4: Earthquake actions in Australia                                                                                               |
| [Deleted]      |                                                                                                                                       |
| 1379           | Specification and supply of concrete                                                                                                  |
| 1397           | Continuous hot-dip metallic coated steel sheet and strip—Coatings of zinc and zinc alloyed with aluminium and magnesium               |
| 1530<br>1530 4 | Methods for fire tests on building materials, components and structures<br>Part 4: Fire-resistance tests for elements of construction |
| 1550.4         |                                                                                                                                       |
| 1554 2         | Structural steel welding<br>Part 2: Stud welding (steel stude to steel)                                                               |
| 1554.2         |                                                                                                                                       |
| 1579           | Arc-welded steel pipes and fittings for water and waste-water                                                                         |

This is a preview. Click here to purchase the full publication.

A1

A1

A1

A1

|       | 3597                                         | Structural and pressure vessel steel—Quenched and tempered plate                                                                                                |
|-------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 3600                                         | Concrete structures                                                                                                                                             |
| A1    | 3610<br>[ <b>Deleted]</b>                    | Formwork for concrete                                                                                                                                           |
|       | 4100                                         | Steel structures                                                                                                                                                |
|       | AS/NZS<br>1163                               | Cold-formed structural steel hollow sections                                                                                                                    |
|       | 1170<br>1170.0<br>1170.1<br>1170.2<br>1170.3 | Structural design actions<br>Part 0: General principles<br>Part 1: Permanent, imposed and other actions<br>Part 2: Wind actions<br>Part 3: Snow and ice actions |
|       | 1252                                         | High-strength steel fastener assemblies for structural engineering—Bolts, nuts and washers                                                                      |
| A1    | 1252.1<br>[ <b>Deleted</b> ]                 | Part 1: Technical requirements                                                                                                                                  |
|       | [Deleted]                                    |                                                                                                                                                                 |
|       | 1554<br>1554.1<br>1554.4                     | Structural steel welding<br>Part 1: Welding of steel structures<br>Part 4: Welding of high-strength quenched and tempered steels                                |
|       | 1594                                         | Hot-rolled steel flat products                                                                                                                                  |
| A1    | [Deleted]                                    |                                                                                                                                                                 |
| ·     | 2425                                         | Bar chairs in reinforced concrete—Product requirements and test methods                                                                                         |
|       | 3678                                         | Structural steel—Hot-rolled plates, floorplates and slabs                                                                                                       |
|       | 3679<br>3679.1<br>3679.2                     | Structural steel<br>Part 1: Hot-rolled bars and sections<br>Part 2: Welded I-sections                                                                           |
|       | 4600                                         | Cold-formed steel structures                                                                                                                                    |
|       | 4671                                         | Steel reinforcing materials                                                                                                                                     |
|       | 5100<br>5100.6                               | Bridge design<br>Part 6: Steel and composite construction                                                                                                       |
|       | ISO<br>3183                                  | Petroleum and natural gas industries—Steel pipe for pipeline transportation systems                                                                             |
|       | 13918                                        | Welding—Studs and ceramic ferrules for arc stud welding                                                                                                         |
|       | NZS<br>1170<br>1170.5                        | Structural design actions<br>Part 5: Earthquake actions—New Zealand                                                                                             |
|       | 3101                                         | Concrete structure Standard—The design of concrete structures                                                                                                   |
| A 1 1 | 3104                                         | Specification for concrete production                                                                                                                           |
| AI    | 3404                                         | Steel structures Standard                                                                                                                                       |
| A1    | EN<br>[Deleted]                              |                                                                                                                                                                 |

1992 Design of concrete structures

1992-1-2 Part 1-2 General rules—Structural fire design

13381 Test methods for determining the contribution to the fire resistance of structural members (series)

7

Where a normative reference is made with an option of an Australian or a New Zealand Standard, the Standard that shall apply is the same as the jurisdiction where the construction occurs.

Documents that are referenced for informative purposes are listed in the Bibliography.

# 1.1.3 Definitions

For the purpose of this Standard, the definitions below apply.

NOTE: Definitions applying only to a particular clause or section are given in that clause or section and referred in this Clause (1.1.3).

**1.1.3.1** Administrative definitions

### **1.1.3.1.1** Authority

A body having regulatory powers, in the area in which the structure is to be erected, to control the design and erection of the structure.

#### **1.1.3.1.2** Boundary element

Portion along wall or diaphragm edge strengthened with structural steel sections and/or longitudinal steel reinforcement and transverse reinforcement.

#### **1.1.3.1.3** Collector element

Also known as a drag strut, this is a member that serves to transfer loads between floor diaphragms and the members of the seismic force resisting system.

#### **1.1.3.1.4** Drawings

The drawings forming part of the project documents setting out the work to be executed.

1.1.3.1.5 May

Indicates the existence of an option.

#### 1.1.3.1.6 Shall

Indicates that a statement is mandatory.

1.1.3.1.7 Should

Indicates a recommendation.

**1.1.3.1.8** Specification

The requirements in the project document, describing the design, materials and procedure of the work to be executed.

# **1.1.3.2** *Technical definitions*

# 1.1.3.2.1 Action

The cause of stress, deformation or displacement in a structure, or in a component member of the structure.

#### **1.1.3.2.2** Action effect

The force, moment, deformation, or like effect, produced in the members of a structure (or its foundations) by an action or combination of actions.

This is a preview. Click here to purchase the full publication.

A1

# **1.1.3.2.3** Active link

The short section of beam in an eccentrically braced frame (EBF) designed and detailed to undergo stable shear and/or flexural inelastic deformation.

# 1.1.3.2.4 Capacity factor

A factor by which the nominal capacity or strength is multiplied to obtain the design capacity or strength.

# **1.1.3.2.5** Characteristic strength

The value of a material strength, as assessed by a standard test, which has a 95% probability of being exceeded in all such tests on the same material.

# **1.1.3.2.6** Collector beam

The beam outside the active link region in an eccentrically braced frame (EBF).

#### **1.1.3.2.7** Complete shear connection of the composite beam ( $\beta = 1$ )

The condition where the moment capacity of the cross-section of the composite beam is not governed by the strength of the shear connection.

# **1.1.3.2.8** Composite beam

A steel beam and a solid or composite slab, interconnected by shear connection to act together to resist action effects as a single structural member.

# **1.1.3.2.9** Composite column

A column comprised of a structural steel section or tubular member which also comprises reinforced concrete. The capacity of this column is considered greater than the sum of the constituent structural steel and reinforced concrete parts.

# **1.1.3.2.10** Composite joint

Consists of a steel connection acting in combination with a reinforced concrete or composite slab.

# **1.1.3.2.11** Composite slab

A cast in situ concrete slab that incorporates profiled steel sheeting as permanent soffit formwork.

# **1.1.3.2.12** Concentrically braced frame (CBF) system

A braced frame in which the members are subject primarily to axial forces.

# **1.1.3.2.13** Concrete

A mixture of cement, aggregates and water, with or without the addition of chemical admixtures, which conforms to AS 3600 or NZS 3101.

**1.1.3.2.14** Concrete slab

A slab cast monolithically with in situ concrete and reinforcement, with or without profiled steel sheeting.

**1.1.3.2.15** Connector group

The shear connectors grouped at a transverse cross-section of a beam.

**1.1.3.2.16** Connector set

The shear connectors between a transverse cross-section and an end of a beam.

**1.1.3.2.17** Construction stage

One of the periods defined in Appendix A.