AS 3600-1994

Australian Standard®

Concrete structures

This Australian Standard was prepared by Committee BD/2, Concrete Structures. It was approved on behalf of the Council of Standards Australia on 3 June 1994 and published on 10 October 1994.

The following interests are represented on Committee BD/2:

Association of Consulting Engineers, Australia

Australian Precast Concrete Manufacturers Association

AUSTROADS

Bureau of Steel Manufacturers of Australia

Cement and Concrete Association of Australia

Concrete Institute of Australia

CSIRO, Division of Building, Construction and Engineering

Department of Housing and Construction, S.A.

Hydro-electric Commission, Tas.

Institution of Engineers, Australia

National Ash Association of Australia

National Ready Mixed Concrete Association

Steel Reinforcement Institute of Australia

University of Adelaide

University of New South Wales

University of Sydney

University of Technology, Sydney

University of Technology, W.A.

Water Board, Sydney, Illawarra and Blue Mountains

Review of Australian Standards. To keep abreast of progress in industry, Australian Standards are subject to periodic review and are kept up to date by the issue of amendments or new editions as necessary. It is important therefore that Standards users ensure that they are in possession of the latest edition, and any amendments thereto.

Full details of all Australian Standards and related publications will be found in the Standards Australia Catalogue of Publications; this information is supplemented each month by the magazine 'The Australian Standard', which subscribing members receive, and which gives details of new publications, new editions and amendments, and of withdrawn Standards.

Suggestions for improvements to Australian Standards, addressed to the head office of Standards Australia, are welcomed. Notification of any inaccuracy or ambiguity found in an Australian Standard should be made without delay in order that the matter may be investigated and appropriate action taken.

Australian Standard®

Concrete structures

First published in part as AS CA2-1934. AS A26 first published 1934. AS CA2-1934 and AS A26-1934 revised, amalgamated and designated AS CA2-1958. Third edition 1963. AS CA35 first published 1963. Second edition 1973. Fourth edition AS CA2—1973. AS CA2—1973 revised and redesignated AS 1480—1974. AS CA35—1973 revised and redesignated AS 1481—1974. AS CA2-1973 and AS CA35-1973 withdrawn 1976. Second edition AS 1481—1978. Second edition AS 1480—1982. AS 1480-1982 and AS 1481-1978 revised, amalgamated and redesignated AS 3600-1988. AS 1480—1982 and AS 1481—1978 withdrawn 1991. Second edition AS 3600—1994. Incorporating: Amdt 1—1996

PUBLISHED BY STANDARDS AUSTRALIA (STANDARDS ASSOCIATION OF AUSTRALIA) 1 THE CRESCENT, HOMEBUSH, NSW 2140

PREFACE

This Standard was prepared by Standards Australia Committee on Concrete Structures, and first published in 1988 as an amalgamation of and to supersede, SAA 1480—1982, SAA Concrete Structures Code and AS 1481—1978, SAA Prestressed Concrete Code.

Objective of the Standard: The principal objective of the Standard is to provide users with nationally acceptable unified rules for the design and detailing of concrete structures and elements, with or without steel reinforcement or prestressing tendons, based on the principles of structural engineering mechanics. A secondary objective is to provide performance criteria against which the finished structure can be assessed for compliance with the relevant design requirements.

Background to Second Edition: Amendment No. 1 to the Standard was issued in June 1990 to take account of the new limit-state versions of Part 1 and Part 2 of AS 1170—SAA Loading code, both published in 1989 and the new Part 3—Snow loads, published in 1990. It also incorporated improvements based on user experience in implementing AS 3600.

Following a regular five-yearly review, further amendments to the Standard were approved by the Concrete Structures Committee in March 1994. These amendments take account of more recent revisions of key materials' Standards, the 1993 publication of AS 1170.4—*Earthquake loads*, and incorporate additional improvements to the clarity and intent of particular requirements, based on user comments.

As a consequence of the Active Cooperation Agreement between Standards Australia (SAA) and Standards New Zealand (SNZ) regarding the preparation of joint SAA/SNZ Standards, and in view of the number and extent of the amendments to AS 3600 now involved, the SAA Concrete Structures Committee recommended that, rather than issuing further 'green slip' amendments, a Second Edition of AS 3600 be published which incorporated all published and approved amendments.

Objective of the Second Edition: The objective of the Second Edition is to provide users with a clean, updated version of the Standard.

Differences between AS 3600 and the Standards which it supersedes, and the principal areas affected by subsequent amendments, are briefly outlined below.

1. Differences between AS 3600 and previous Standards

Although AS 1480—1982 and AS 1481—1978 form the basis of AS 3600, it differs markedly from them in both format and content, as indicated below.

1.1 Limit state format In keeping with current ISO and SAA policy on structural design Standards, the appropriate functional states, such as strength and serviceability, and the corresponding performance limits are presented generally in the format of design action effects (bending moments, shear forces) and corresponding design resistances. Loads and load combinations are referred to AS 1170 from Section 3, and design action effects determined from analysis in accordance with Section 7. Design resistances are then determined for the various elements from Sections 8, 9 and 10 as appropriate. This represents the culmination of the advance from permissible stress design to full limit state design, which began with the introduction of the ultimate-strength method in the 1974 edition of AS 1480.

1.2 General application Requirements of the Standard have been broadened and modified where necessary, to ensure that generally they apply to reinforced members with, or without, some degree of prestressing. Requirements are given separately for unreinforced (plain) concrete, while requirements which apply only to prestressing are now included as separate clauses in the appropriate Sections.

The relevant provisions of the Standard have also been widened so that it is now suitable for design in conjunction with the *Austroads Bridge Design Code* or the *ANZRC Railway bridge design manual*, either of which will take precedence over AS 3600 for bridges under the jurisdiction of the local representative authority.

1.3 New inclusions A tiered approach to member design rules has been introduced to allow the designer more flexibility in choice of design methods to suit a particular project. Simplified rules, for common applications within prescribed limits, are generally presented first, with more complex rules having wider applications following.

Durability and fire-resistance provisions have been included as independent considerations within the body of the Standard. Previously they have been either implied in various design rules, or given only as recommendations in appendices.

Provision has also been made for the use of the 'truss analogy' where non-flexural behaviour of members occurs.

Additional detailing rules and requirements for concrete structures required to be designed for earthquake loads, previously given in various appendices throughout AS 2121, *SAA Earthquake Code*, (now superseded), are given in Appendix A.

1.4 Technical changes The major technical differences between AS 3600 and the previous Standards lie in the areas of shear in beams and slabs, the design of columns and walls, and the development of stress in reinforcement. The changes that have been made reflect recent advances in materials technology, continuing research into structural behaviour and the ready availability of computer-aided methods of analysis and design. The background to the changes is covered in the Commentary (AS 3600 Supplement 1) on the corresponding clauses together with selected references from the published technical literature.

1.5 Construction and workmanship A considerable number of provisions relating to good construction practices and workmanship, contained in the previous Standards, have been omitted from AS 3600. The omitted material was considered to be either inappropriate because it had contractual implications, or inadequate because it was too specific to cover the likely variety of project situations that may occur and the variety of acceptable alternative practices that could be adopted. The Committee felt that the former should be placed in project specifications where they could be dealt with more effectively and the latter were more appropriate to handbooks and guides on good practice rather than in a structural design standard. The retained provisions have been expressed in terms of required end results rather than prescribing particular methods for achieving those results. Their retention is intended to ensure that the finished concrete structure satisfies the design requirements.

1.6 Editorial changes Advantage was taken of the 1988 revision to rearrange the material contained in the Standard so that it is more readily useable by the practising design engineer. In this regard, the usual sequence in the design process (namely load assessment, analysis, member design and detailing) rather than the checking process, was the guiding criterion.

In line with Standards Australia editorial policy, the words 'shall' and 'may' are used consistently throughout the Standard to indicate respectively, a mandatory provision and an acceptable or permissible alternative.

2 Amendments

As noted in the opening paragraphs of the Preface, this Edition incorporates Amendment No. 1 of June 1990 and amendments approved in March 1994. Throughout the Standard the amended portions are indicated by vertical bars in the left hand margin. The 1994 Amendments are further distinguished by double bars.

It was also noted that the primary purpose of the amendments was to take account of new, or revised, key reference Standards that had been issued after publication of the first Edition. The principal Standards concerned and the consequent changes to relevant AS 3600 requirements are briefly outlined below.

2.1 AS 1170—Minimum design loads on structures The 1989 revision of AS 1170.1—*Dead and live loads and load combinations*; AS 1170.2—*Wind loads*; and AS 1170.3—1990, *Snow loads*, were covered by the Amendment No.1 changes to Section 3. AS 4055—*Wind loads for housing*, published in 1992, has now been included in Section 3 under the 1994 Amendments.

The publication of AS 1170.4—*Earthquake loads* in 1993, which now supersedes AS 2121, is addressed by the 1994 Amendment. Apart from consequent minor changes in Section 3, the major impact of the new part is on Appendix A of AS 3600. This Appendix has been completely redrafted to take account of major differences between AS 1170.4 and AS 2121 in their approach to the zoning and classification of structures for which design for earthquake load is required. Although earthquake forces determined from AS 1170.4 are generally slightly higher than previously required for many areas, the detailing requirements of the new Appendix are generally somewhat less stringent than corresponding previous requirements. The net result is that there is little change to the 'status quo' except for taller buildings in regions of the highest seismic risk.

2.2 AS 1379—The specification and manufacture of concrete The 1991 revision of AS 1379 now covers all aspects of the manufacture of concrete, from the specification of ingredient materials, through batching and mixing, to discharge of plastic concrete at the site. It also includes production and project assessment of plastic-state properties and potential hardened-state properties. This obviates the need for detailed requirements for plastic concrete to be specified in AS 3600 and the consequent changes are reflected in the 1994 amendment. These involve the complete redrafting of Clause 19.1 and its dependent subclauses, and Section 20 in its entirety.

It should be noted that construction requirements for handling, placing, protection, curing and stripping have been retained in Section 19, as these all relate to activities which occur after site discharge of the plastic concrete and hence are outside the scope of AS 1379.

In the related area of concrete materials, AS 3582—1991, Supplementary cementitious materials for use with portland cement; AS 3799—1990, Liquid membrane-forming curing compounds for concrete; and AS 3972—1991, Portland and blended cements (supersedes AS 1315 and AS 1317) are also covered by the 1994 amendment.

2.3 AS 3735 Concrete structures for retaining liquids AS 3735—1991 and its companion Standard AS 2783—*Use of reinforced concrete for small swimming pools* (1992) now provide detailed requirements for this specialized group of concrete structures. The consequent change to Section 17 of AS 3600 is covered by the 1994 amendment.

2.4 Other changes Other technical changes covered by the 1994 Amendment are principally those initiated by comments from users of the Standard and relate to particular clauses in Sections 8, 9 and 10.

Publication of a second edition has provided the opportunity to incorporate recent changes to Standards Australia 'style' principles; notably the change from double to single column format. Some changes in Section 1, as noted in the 1994 Amendment, are also related to this. The remaining changes are of a minor editorial or typographical nature.

Appropriate amendments are also being made to the relevant clauses in the Commentary on the Standard (AS 3600 Supplement 1) which will be issued concurrently with this Second Edition of AS 3600.

The terms 'normative' and 'informative' have been used in this Standard to define the application of the appendix to which they apply. A 'normative' appendix is an integral part of a Standard, whereas an 'informative' appendix is only for information and guidance.

CONTENTS

Page

SECTION	1 SCOPE AND GENERAL	
1.1	SCOPE AND APPLICATION	10
1.2	REFERENCED DOCUMENTS	10
1.3	INTERPRETATIONS AND USE OF ALTERNATIVE	
	MATERIALS OR METHODS	11
1.4	DESIGN	11
1.5	CONSTRUCTION	12
1.6	DEFINITIONS	12
1.7	NOTATION	14
SECTION	2 DESIGN REQUIREMENTS AND PROCEDURES	
2.1	DESIGN REQUIREMENTS	22
2.2	DESIGN FOR STABILITY	22
2.3	DESIGN FOR STRENGTH	22
2.4	DESIGN FOR SERVICEABILITY	22
2.5	DESIGN FOR STRENGTH AND SERVICEABILITY BY LOAD	
	TESTING OF A PROTOTYPE	24
2.6	DESIGN FOR DURABILITY	24
2.7	DESIGN FOR FIRE RESISTANCE	24
2.8	OTHER DESIGN REQUIREMENTS	24
SECTION	3 LOADS AND LOAD COMBINATIONS FOR STABILITY,	
	STRENGTH AND SERVICEABILITY	
3.1	LOADS AND OTHER ACTIONS	25
3.2	LOAD COMBINATIONS FOR STABILITY DESIGN	25
3.3	LOAD COMBINATIONS FOR STRENGTH DESIGN	26
3.4	LOAD COMBINATIONS FOR SERVICEABILITY DESIGN	26
3.5	LOAD COMBINATIONS FOR FIRE-RESISTANCE DESIGN	26
SECTION	4 DESIGN FOR DURABILITY	
4.1	APPLICATION OF SECTION	27
4.2	DESIGN FOR DURABILITY	27
4.3	EXPOSURE CLASSIFICATION	27
4.4	REQUIREMENTS FOR CONCRETE FOR EXPOSURE	
	CLASSIFICATIONS A1 AND A2	29
4.5	REQUIREMENTS FOR CONCRETE FOR EXPOSURE	
	CLASSIFICATIONS B1, B2 AND C	29
4.6	REQUIREMENTS FOR CONCRETE FOR EXPOSURE	
	CLASSIFICATION U	30
4.7		30
4.8	ADDITIONAL REQUIREMENTS FOR FREEZING AND THAWING	30
4.9	RESTRICTIONS ON CHEMICAL CONTENT IN CONCRETE	31
4.10	REQUIREMENTS FOR COVER TO REINFORCING STEEL AND	
	TENDONS	31

Page

SECTION	5 DESIGN FOR FIRE RESISTANCE	0
5.1	SCOPE OF SECTION	34
5.2	DEFINITIONS	34
5.3	DESIGN REQUIREMENTS	34
5.4	FIRE-RESISTANCE PERIODS FOR BEAMS	35
5.5	FIRE-RESISTANCE PERIODS FOR SLABS	37
5.6	FIRE-RESISTANCE PERIODS FOR COLUMNS	38
5.7	FIRE-RESISTANCE PERIODS FOR WALLS	39
5.8	FIRE-RESISTANCE PERIODS FROM FIRE TESTS	41
5.9	FIRE-RESISTANCE PERIODS BY CALCULATION	42
5.10	INCREASE OF FIRE-RESISTANCE PERIODS BY USE OF	
	INSULATING MATERIALS	42
SECTION	6 DESIGN PROPERTIES OF MATERIALS	
6.1	PROPERTIES OF CONCRETE	45
6.2	PROPERTIES OF REINFORCEMENT	49
6.3	PROPERTIES OF TENDONS	50
6.4	LOSS OF PRESTRESS IN TENDONS	52
SECTION	7 METHODS OF STRUCTURAL ANALYSIS	
7.1	GENERAL	55
7.2	SIMPLIFIED METHOD FOR REINFORCED CONTINUOUS BEAMS	
	AND ONE-WAY SLABS	57
7.3	SIMPLIFIED METHOD FOR REINFORCED TWO-WAY SLABS	
	SUPPORTED ON FOUR SIDES	58
7.4	SIMPLIFIED METHOD FOR REINFORCED TWO-WAY SLAB	
	SYSTEMS HAVING MULTIPLE SPANS	59
7.5	IDEALIZED FRAME METHOD FOR STRUCTURES	
	INCORPORATING TWO-WAY SLAB SYSTEMS	62
7.6	LINEAR ELASTIC ANALYSIS	63
7.7	ELASTIC ANALYSIS OF FRAMES INCORPORATING	
	SECONDARY BENDING MOMENTS	65
7.8	RIGOROUS STRUCTURAL ANALYSIS	66
7.9	PLASTIC METHODS OF ANALYSIS FOR SLABS	66
7.10	PLASTIC METHODS OF ANALYSIS OF FRAMES	66
SECTION	8 DESIGN OF BEAMS FOR STRENGTH AND	
	SERVICEABILITY	
8.1	STRENGTH OF BEAMS IN BENDING	
8.2	STRENGTH OF BEAMS IN SHEAR	
8.3	STRENGTH OF BEAMS IN TORSION	
8.4	LONGITUDINAL SHEAR IN BEAMS	76
8.5	DEFLECTION OF BEAMS	78
8.6	CRACK CONTROL OF BEAMS	79
8.7	VIBRATION OF BEAMS	
8.8	T-BEAMS AND L-BEAMS	
8.9	SLENDERNESS LIMITS FOR BEAMS	80

	Р	age
SECTION	9 DESIGN OF SLABS FOR STRENGTH AND SERVICEABILITY	0
9.1	STRENGTH OF SLABS IN BENDING	82
9.2	STRENGTH OF SLABS IN SHEAR	85
9.3	DEFLECTION OF SLABS	88
9.4	CRACK CONTROL OF SLABS	90
9.5	VIBRATION OF SLABS	91
9.6	MOMENT RESISTING WIDTH FOR ONE-WAY SLABS	
,	SUPPORTING CONCENTRATED LOADS	92
9.7	LONGITUDINAL SHEAR IN COMPOSITE SLABS	-
2.1		/ _
SECTION	10 DESIGN OF COLUMNS FOR STRENGTH AND	
5201101	SERVICEABILITY	
10.1	GENERAL	93
10.2	DESIGN PROCEDURES	
10.2	DESIGN OF SHORT COLUMNS	
10.3	DESIGN OF SLENDER COLUMNS	
10.4	SLENDERNESS	
10.5	STRENGTH OF COLUMNS IN COMBINED BENDING AND))
10.0	COMPRESSION	08
10.7	REINFORCEMENT REQUIREMENTS FOR COLUMNS	
10.7	TRANSMISSION OF AXIAL FORCE THROUGH FLOOR SYSTEMS	
10.8	TRANSMISSION OF AXIAL FORCE THROUGH FLOOR STSTEMS	102
SECTION	11 DESIGN OF WALLS	
11.1	APPLICATION	102
11.1	DESIGN PROCEDURES	
11.2		
1110	BRACING OF WALLS	103
11.4		104
11.5	TO VERTICAL FORCES ONLY	-
11.5	DESIGN OF WALLS FOR IN-PLANE HORIZONTAL FORCES	
11.6	REINFORCEMENT REQUIREMENTS FOR WALLS	105
GEOTION	14 DEGION OF NON ELEVIDAL MEMORDA FND ZONES	
SECTION	12 DESIGN OF NON-FLEXURAL MEMBERS, END ZONES	
	AND BEARING SURFACES	
12.1	DESIGN OF NON-FLEXURAL MEMBERS	
	ANCHORAGE ZONES FOR PRESTRESSING ANCHORAGES	
12.3	BEARING SURFACES	110
SECTION	13 STRESS DEVELOPMENT AND SPLICING OF	
	REINFORCEMENT AND TENDONS	
13.1	STRESS DEVELOPMENT IN REINFORCEMENT	
13.2	SPLICING OF REINFORCEMENT	
13.3	STRESS DEVELOPMENT IN TENDONS	
13.4	COUPLING OF TENDONS	115
	14 JOINTS, EMBEDDED ITEMS, FIXINGS AND CONNECTIONS	
14.1	DESIGN OF JOINTS	
14.2	EMBEDDED ITEMS AND HOLES IN CONCRETE	
14.3	REQUIREMENTS FOR FIXINGS	
14 4	CONNECTIONS	117

Page

SECTION	15 PLAIN CONCRETE MEMBERS	0
15.1	APPLICATION	18
15.2	DESIGN	
15.3	STRENGTH IN BENDING 1	
15.4	STRENGTH IN SHEAR 1	18
15.5	STRENGTH IN AXIAL COMPRESSION	
15.6	STRENGTH IN COMBINED BENDING AND COMPRESSION 1	
SECTION	16 CONCRETE PAVEMENTS, FLOORS AND RESIDENTIAL	
	FOOTINGS	
16.1	APPLICATION	20
16.2	ADDITIONAL DESIGN CONSIDERATIONS FOR PAVEMENTS	
	AND INDUSTRIAL AND COMMERCIAL FLOORS 1	20
16.3	RESIDENTIAL FLOORS AND FOOTINGS 1	20
SECTION	17 LIQUID RETAINING STRUCTURES	
	DESIGN REQUIREMENTS 1	20
SECTION	18 MARINE STRUCTURES	
18.1	APPLICATION1	
18.2	ADDITIONAL LOADS AND ACTIONS	
18.3	ADDITIONAL DURABILITY AND DESIGN REQUIREMENTS 1	21
	19 MATERIAL AND CONSTRUCTION REQUIREMENTS	
19.1	MATERIAL AND CONSTRUCTION REQUIREMENTS FOR	~ ~
10.0	CONCRETE AND GROUT	.22
19.2	MATERIAL AND CONSTRUCTION REQUIREMENTS FOR	~ 1
10.2	REINFORCING STEEL	24
19.3	MATERIAL AND CONSTRUCTION REQUIREMENTS FOR	•
10.4	PRESTRESSING DUCTS, ANCHORAGES AND TENDONS 1	26
19.4	CONSTRUCTION REQUIREMENTS FOR JOINTS AND	20
19.5	EMBEDDED ITEMS	
19.5 19.6	FORMWORK	
19.0		29
SECTION	20 TESTING AND ASSESSMENT FOR COMPLIANCE OF	
SECTION	CONCRETE SPECIFIED BY COMPRESSIVE STRENGTH	
20.1	GENERAL	32
20.2	PRODUCTION ASSESSMENT AND CONTROL	
20.3	PROJECT ASSESSMENT	-
20.4	PRINCIPLES FOR ASSESSMENT OF CONCRETE SPECIFIED BY	
	STRENGTH	32
20.5	ALTERNATIVE ASSESSMENT METHOD	32
20.6	DEEMED TO COMPLY PROVISIONS	32
SECTION	21 TESTING OF MEMBERS AND STRUCTURES	
21.1	PROOF TESTING OF BEAMS AND SLABS 1	33
21.2	PROTOTYPE TESTING 1	33
21.3	QUALITY CONTROL TESTING OF MANUFACTURED UNITS 1	34
21.4	TESTING FOR STRENGTH OF HARDENED CONCRETE IN	
	PLACE	34