AS 3600 Supp1—1994

AS 3600 Supplement 1—1994

Concrete structures—Commentary (Supplement to AS 3600—1994)

This Australian Standard was prepared by Committee BD/2, Concrete Structures. It was approved on behalf of the Council of Standards Australia on 27 July 1994 and published on 10 October 1994.

The following interests are represented on Committee BD/2:

Association of Consulting Engineers, Australia

Australian Construction Services

Australian Federation of Construction Contractors

Australian Precast Concrete Manufacturers Association

AUSTROADS

Bureau of Steel Manufacturers of Australia

Cement and Concrete Association of Australia

CSIRO, Division of Building, Construction and Engineering

Department of Public Works, N.S.W.

Hydro-electric Commission, Tas.

Institution of Engineers, Australia

Master Builders Construction and Housing Association, Australia

National Ash Association of Australasia

National Ready Mixed Concrete Association

Steel Reinforcement Institute of Australia

South Australian Department of Housing and Construction

University of Adelaide

University of New South Wales

University of Sydney

University of Technology, Sydney

Water Board-Sydney, Illawarra and Blue Mountains

Review of Australian Standards. To keep abreast of progress in industry, Australian Standards are subject to periodic review and are kept up to date by the issue of amendments or new editions as necessary. It is important therefore that Standards users ensure that they are in possession of the latest edition, and any amendments thereto.

Full details of all Australian Standards and related publications will be found in the Standards Australia Catalogue of Publications; this information is supplemented each month by the magazine 'The Australian Standard', which subscribing members receive, and which gives details of new publications, new editions and amendments, and of withdrawn Standards.

Suggestions for improvements to Australian Standards, addressed to the head office of Standards Australia, are welcomed. Notification of any inaccuracy or ambiguity found in an Australian Standard should be made without delay in order that the matter may be investigated and appropriate action taken.

AS 3600 Supplement 1—1994

Concrete structures—Commentary (Supplement to AS 3600—1994)

```
AS 3600 Supplement 1 first published in part as
 SAA MP28.C4 — 1975.
SAA MP28.C6 first published 1977.
SAA MP28.C9 first published 1975.
SAA MP28.C10 first published 1975.
SAA MP28.C11 first published 1977.
SAA MP28.C12 to C15 first published 1977.
SAA MP28.C19 first published 1978.
SAA MP28.C21 first published 1978.
SAA MP28.C22 first published 1978.
SAA MP28.C23 first published 1978.
SAA MP28.C25 first published 1978.
SAA MP28.C26 first published 1975.
These Standards revised, amalgamated and redesignated
 AS 3600 Supplement 1—1990.
Second edition 1994.
Incorporating:
Amdt 1 — 1996
```

PUBLISHED BY STANDARDS AUSTRALIA (STANDARDS ASSOCIATION OF AUSTRALIA) 1 THE CRESCENT, HOMEBUSH, NSW 2140

PREFACE

This Commentary (AS 3600—Supplement 1) was prepared by Standards Australia Committee on Concrete Structures and first published in 1990 to replace MP 28, Commentary on AS 1480—Concrete Structures Code, which was withdrawn in January 1991. While it is intended that it be read in conjunction with AS 3600, Concrete structures, it does not form an integral part of that Standard.

Objective The objective of this Commentary is—

- (a) to provide background reference material to the Clauses in the Standard;
- (b) to indicate the origin of particular requirements;
- (c) to indicate departures from previous practice; and
- (d) to explain the application of certain Clauses.

The clause numbers and titles used in the Commentary are the same as those in AS 3600 except that they are prefixed by the letter C. To avoid possible confusion between Commentary and Standard clauses cross-referenced within the text, Commentary clauses are referred to as 'Paragraph C ...' in accordance with Standards Australia policy.

Gaps in the numerical sequence of Commentary Paragraphs indicate that either the technical requirements of the corresponding clauses in the Standard are essentially the same as those previously given in AS 1480, Concrete Structures Code or AS 1481, Prestressed Concrete Code, or the committee considered that commentary on these clauses was not needed.

Where appropriate, each Section of the Commentary concludes with a list of references which are cross-referenced numerically in the text, e.g. (Ref. 6) or (Refs 6, 7 and 8). In some Sections additional references for further reading, or as a lead to specialist literature, have also been listed.

As noted in the Preface to AS 3600, the Standard represents a comprehensive revision and amalgamation of AS 1480 and AS 1481. To put things in perspective, AS 1480 and AS 1481 largely dated back to 1973 and essentially represented the technology of the 1960s. Since then there have been considerable advances in materials and construction technology. Also, due to the increased application of computers to modelling and analytical techniques, an improved understanding of both material and member behaviour in complete structures has been realized. More sophisticated analysis and design procedures are now readily available to design-office staff via desktop computers, while complex formulas can be quickly evaluated using electronic calculators.

While the Standard inevitably reflects the abovementioned changes, a considerable amount of material and concepts have been retained from AS 1480 and AS 1481, particularly in those areas where the benefits of technical change seemed doubtful to the committee. However, in all such instances the opportunity was taken to edit retained requirements, in order to remove ambiguities which in the past have led to conflicting interpretations.

Background to second edition

The background to the second edition of this Commentary is essentially the same as that given in the Preface of the second edition of AS 3600, with respect to new and revised reference Standards. Furthermore, in agreeing to a second edition of the Standard rather than the usual 'green-slip' amendments, the Committee also agreed that the same philosophy should in addition apply to the Commentary so that consistency would be maintained between corresponding editions of the two documents.

As the Commentary had not been amended since its publication, the opportunity was taken to include improvements suggested in the interim by users, as well as the appropriate changes necessitated by the 1990 and 1994 amendments to AS 3600. All such changes are indicated by a single bar in the left-hand margin for the extent of the affected text or figure.

Objective of second edition

The objective of the second edition is to provide a clean, updated version of the Commentary that is consistent with the second edition of AS 3600.

Like the Standard itself, this Commentary is neither an immutable nor a perfect document. Suggestions for improvement to the Commentary, in either the content or extent of that provided, are therefore welcomed by Standards Australia.

ACKNOWLEDGMENTS

Standards Australia wishes to acknowledge and thank the following members of BD/2 and its subcommittees who have contributed significantly to this Commentary.

Assoc. Prof. R Q Bridge Mr B J Corcoran Prof. K A Faulkes Mr B J Ferguson Dr I Gilbert Dr D Gunasekera Mr H P Isaacs Dr F S Pitman Mr R J Potter Prof. B V Rangan Mr W J Semple Mr D J Smee Mr G C Verge Dr PF Walsh Prof. R T Warner Mr A C Whitting Mr P J Wyche

CONTENTS

	P_{i}	age
SECTION	N C1 SCOPE AND GENERAL	
C1.1		8
C1.1	REFERENCED DOCUMENTS	
C1.2	INTERPRETATIONS AND USE OF ALTERNATIVE MATERIALS OR	Ü
C1.5	METHODS	8
C1.4	DESIGN	
C1.5	CONSTRUCTION	
C1.6	DEFINITIONS	
C1.7	NOTATION	-
SECTION	N C2 DESIGN REQUIREMENTS AND PROCEDURES	
C2.1	DESIGN REQUIREMENTS	19
C2.3	DESIGN FOR STRENGTH	19
C2.4	DESIGN FOR SERVICEABILITY	20
C2.6	DESIGN FOR DURABILITY	21
C2.7	DESIGN FOR FIRE RESISTANCE	21
C2.8	OTHER DESIGN REQUIREMENTS	22
SECTION	N C3 LOADS AND LOAD COMBINATIONS FOR STABILITY,	
	STRENGTH AND SERVICEABILITY	
C3.1	LOADS AND OTHER ACTIONS	
C3.2	LOAD COMBINATION FOR STABILITY DESIGN	
C3.3	LOAD COMBINATIONS FOR STRENGTH DESIGN	24
CECTION	N C4 DESIGN FOR DURABILITY	
C4.1	APPLICATION OF SECTION	26
C4.1 C4.2	DESIGN FOR DURABILITY	
C4.2 C4.3	EXPOSURE CLASSIFICATION	
C4.3 C4.4	REQUIREMENTS FOR CONCRETE FOR EXPOSURE	20
C4.4	CLASSIFICATIONS A1 AND A2	20
C4.5		
C4.5	REQUIREMENTS FOR CONCRETE FOR EXPOSURE	
C4.6	CLASSIFICATIONS B1, B2 AND C	30
C4.6	REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATION U	31
C4.7	ADDITIONAL REQUIREMENTS FOR ABRASION	
C4.7 C4.8	ADDITIONAL REQUIREMENTS FOR ABRASION	
C4.8 C4.9	RESTRICTION ON CHEMICAL CONTENT IN CONCRETE	
	REQUIREMENTS FOR COVER TO REINFORCING STEEL AND	32
C4.10	TENDONS	32
	TENDONS	32
SECTION	N C5 DESIGN FOR FIRE RESISTANCE	
C5.1	SCOPE OF SECTION	35
C5.2	DEFINITIONS	
C5.3	DESIGN REQUIREMENTS	
C5.4	FIRE-RESISTANCE PERIODS FOR BEAMS	
C5.5	FIRE-RESISTANCE PERIODS FOR SLABS	
C5.6	FIRE-RESISTANCE PERIODS FOR COLUMNS	40

This is a preview. Click here to purchase the full publication.

	· · · · · · · · · · · · · · · · · · ·	Page
C5.7	FIRE-RESISTANCE PERIODS FOR WALLS	40
C5.8	FIRE-RESISTANCE PERIODS FROM FIRE TESTS	41
C5.9	CALCULATION OF FIRE TEST PERFORMANCE	41
C5.10	INCREASE OF FIRE-RESISTANCE PERIODS BY USE OF	
	INSULATING MATERIALS	41
SECTION	N C6 DESIGN PROPERTIES OF MATERIALS	
C6.1	PROPERTIES OF CONCRETE	45
C6.2	PROPERTIES OF REINFORCEMENT	51
C6.3	PROPERTIES OF TENDONS	52
C6.4	LOSS OF PRESTRESS	54
SECTION	N C7 METHODS OF STRUCTURAL ANALYSIS	
C7.1	METHODS OF ANALYSIS	59
C7.2	SIMPLIFIED METHOD FOR REINFORCED CONTINUOUS BEAMS	60
07.2	AND ONE-WAY SLABS	60
C7.3	SIMPLIFIED METHOD FOR REINFORCED TWO-WAY SLABS	60
07.4.4	SUPPORTED ON FOUR SIDES	
	AND C7.5 TWO-WAY SLAB SYSTEMS	60
C7.4	SIMPLIFIED METHOD FOR REINFORCED TWO-WAY SLAB	<i>C</i> 1
G5 5	SYSTEMS HAVING MULTIPLE SPANS	61
C7.5	IDEALIZED FRAME METHOD FOR STRUCTURES INCORPORATING	
~	TWO-WAY SLAB SYSTEMS	_
C7.6	LINEAR ELASTIC ANALYSIS	62
C7.7	ELASTIC ANALYSIS OF FRAMES INCORPORATING SECONDARY	
	BENDING MOMENTS	
C7.8	RIGOROUS STRUCTURAL ANALYSIS	
C7.9	PLASTIC METHODS OF ANALYSIS FOR SLABS	65
	N C8 DESIGN OF BEAMS FOR STRENGTH AND SERVICEABILITY	
C8.1	STRENGTH OF BEAMS IN BENDING	
C8.2	STRENGTH OF BEAMS IN SHEAR	
C8.3	STRENGTH OF BEAMS IN TORSION	
C8.4	LONGITUDINAL SHEAR IN BEAMS	
C8.5	DEFLECTION OF BEAMS	
C8.6	CRACK CONTROL OF BEAMS	
C8.7	VIBRATION OF BEAMS	
C8.8	T-BEAMS AND L-BEAMS	
C8.9	SLENDERNESS LIMITS FOR BEAMS	88
SECTION		
C9.1	STRENGTH OF SLABS IN BENDING	
C9.2	STRENGTH OF SLABS IN SHEAR	
C9.3	DEFLECTION OF SLABS	
C9.4	CRACK CONTROL OF SLABS	
C9.5	VIBRATION OF SLABS	97
C9.6	MOMENT RESISTING WIDTH FOR ONE-WAY SLABS SUPPORTING	
	POINT LOADS	97

SECTIO	N C10 DESIGN OF COLUMNS FOR STRENGTH AND
	SERVICEABILITY
C10.1	GENERAL
C10.2	DESIGN PROCEDURES
C10.3	DESIGN OF SHORT COLUMNS
C10.4	DESIGN OF SLENDER COLUMNS
C10.5	SLENDERNESS
C10.6	STRENGTH OF COLUMNS IN COMBINED BENDING AND
	COMPRESSION
C10.7	REINFORCEMENT REQUIREMENTS FOR COLUMNS
C10.8	TRANSMISSION OF AXIAL FORCE THROUGH FLOOR SYSTEMS 113
SECTIO	N C11 DESIGN OF WALLS
C11.1	APPLICATION
C11.2	DESIGN PROCEDURES
C11.3	BRACING OF WALLS
C11.4	SIMPLIFIED DESIGN METHOD FOR BRACED WALLS SUBJECTED
	TO VERTICAL FORCES ONLY
C11.5	DESIGN OF WALLS FOR IN-PLANE HORIZONTAL FORCES 116
C11.6	REINFORCEMENT REQUIREMENTS FOR WALLS
SECTIO	N 12 DESIGN OF NON-FLEXURAL MEMBERS, END ZONES
	AND BEARING SURFACES
C12.1	DESIGN OF NON-FLEXURAL MEMBERS
C12.2	ANCHORAGE ZONES FOR PRESTRESSING ANCHORAGES 122
C12.3	BEARING SURFACES
SECTIO	N C13 STRESS DEVELOPMENT AND SPLICING OF
	REINFORCEMENT AND TENDONS
C13.1	STRESS DEVELOPMENT IN REINFORCEMENT
C13.2	SPLICING OF REINFORCEMENT
C13.3	STRESS DEVELOPMENT IN TENDONS
C13.4	COUPLING OF TENDONS
SECTIO	N C14 JOINTS, EMBEDDED ITEMS, FIXINGS AND CONNECTIONS
C14.1	DESIGNS OF JOINTS
C14.2	EMBEDDED ITEMS AND HOLES IN CONCRETE
C14.3	REQUIREMENTS FOR FIXINGS
SECTIO	N C15 PLAIN CONCRETE MEMBERS
C15.1	APPLICATION
C15.2	DESIGN
C15.3	STRENGTH IN BENDING
C15.4	STRENGTH IN SHEAR
	STRENGTH IN AXIAL COMPRESSION

	Page
SECTION	N C16 CONCRETE PAVEMENTS, FLOORS AND
	RESIDENTIAL FOOTINGS
C16.1	APPLICATION
C16.2	ADDITIONAL DESIGN CONSIDERATIONS FOR PAVEMENTS AND
G1 6 2	INDUSTRIAL AND COMMERCIAL FLOORS
C16.3	RESIDENTIAL FLOORS AND FOOTINGS
SECTION	N C17 LIQUID RETAINING STRUCTURES
C17.1	GENERAL
SECTION	N C18 MARINE STRUCTURES
C18.1	APPLICATION
C18.2	ADDITIONAL LOADS AND ACTIONS
	ADDITIONAL DURABILITY AND DESIGN REQUIREMENTS
SECTION	N C19 MATERIAL AND CONSTRUCTION REQUIREMENTS
C19.1	MATERIAL AND CONSTRUCTION REQUIREMENTS FOR
C17.1	CONCRETE AND GROUT
C19.2	MATERIALS AND CONSTRUCTION REQUIREMENTS FOR
C17.2	REINFORCING STEEL
C19.3	MATERIAL AND CONSTRUCTION REQUIREMENTS FOR
C17.5	PRESTRESSING DUCTS, ANCHORAGES AND TENDONS
C19.4	CONSTRUCTION REQUIREMENTS FOR JOINTS AND EMBEDDED
01)	ITEMS
C19.5	TOLERANCES FOR STRUCTURES AND MEMBERS
C19.6	FORMWORK
SECTION	N C20 TESTING AND ASSESSMENT FOR COMPLIANCE OF
SECTIO	CONCRETE SPECIFIED BY COMPRESSIVE STRENGTH
C20.1	GENERAL
C20.1	MANUFACTURE OF CONCRETE
C20.2	
C20.3	PRINCIPLES FOR ASSESSMENT OF CONCRETE SPECIFIED BY
C20. 4	GRADE
C20.5	ALTERNATIVE ASSESSMENT METHODS
C20.6	DEEMED TO COMPLY PROVISIONS
SECTION	N C21 TESTING OF MEMBERS AND STRUCTURES
C21.1	PROOF TESTING OF BEAMS AND SLABS
C21.1	PROTOTYPE TESTING
	QUALITY CONTROL TESTING OF MANUFACTURED UNITS 158
	TESTING FOR STRENGTH OF HARDENED CONCRETE IN PLACE 158
A DDDLLD	NIV CA ADDITIONAL REQUIREMENTS FOR STRUCTURES SUBJECT
APPEND	DIX CA ADDITIONAL REQUIREMENTS FOR STRUCTURES SUBJECT TO SEISMIC ACTIONS

STANDARDS AUSTRALIA

Australian Standard AS 3600 Supp 1

Concrete structures—Commentary (Supplement to AS 3600—1994)

SECTION C1 SCOPE AND GENERAL

C1.1 SCOPE AND APPLICATION

- **C1.1.1 Scope** The Standard sets out the minimum requirements for the design and construction of safe, serviceable and durable concrete structures. There may be other requirements, not covered by the Standard, which also have to be considered.
- **C1.1.2 Application** A lower concrete strength limit of 20 MPa has been imposed, as strength grades less than this are not considered suitable for structures.

An upper concrete strength limit of 50 MPa has been adopted, because much of the research on which the Standard is based involved concrete strengths at or below this value. Nevertheless, higher strength concretes are being used in Australia and overseas (Refs. 1 and 2). The Standard may possibly be applied without change to concretes with 28-day compressive strengths up to 65 MPa. However, beyond 50 MPa, concrete becomes increasingly brittle in its structural behaviour and, as indicated in Note 2, current detailing requirements may be inadequate for ensuring the necessary elastic and ductile behaviour assumed in the various design Sections.

Concretes made from naturally occurring Australian coarse aggregates have surface-dry densities falling in the range 2100 kg/m³ to 2800 kg/m³. Lightweight structural concretes in Australia generally use naturally occurring sands combined with manufactured lightweight aggregates, for which the surface-dry density is seldom less than 1800 kg/m³. Density limits for structural concretes have been set accordingly.

Design of road and pedestrian bridges is covered by the 'Austroads Bridge Design Code'.

In the preparation of a Standard such as this, a certain level of knowledge and competence of the majority of users must be assumed. As indicated by the Note, it was assumed that the predominant users of this Standard would be professionally qualified civil or structural engineers experienced in the design of concrete structures, or equally qualified but less experienced persons working under their guidance. It is therefore intended that the Standard be applied and interpreted primarily by such persons.

- C1.2 REFERENCED DOCUMENTS The Standards listed in Appendix B are subject to revision from time to time. A check should be made with Standards Australia as to the currency of any Standard referenced in the text.
- C1.3 INTERPRETATIONS AND USE OF ALTERNATIVE MATERIALS OR METHODS It is intended that where Committee Interpretations or Opinions are given, which may relate initially to particular projects but have general application, they will be collated and published in a separate document as 'Rulings', which will be updated on a regular basis. The Rulings will then form the basis for future amendments or revisions of the Standard or its Commentary and will be in line with similar 'Rulings' applying to other Australian Standards.