

Reinforced Autoclaved Aerated Concrete

Part 2: Design

A1

This Standard is based on EN 12602:2008+A1:2013. © All rights reserved

This Australian Standard® was prepared by Committee BD-106, Autoclaved Aerated Concrete. It was approved on behalf of the Council of Standards Australia on 23 November 2015.

This Standard was published on 23 December 2015.

The following are represented on Committee BD-106:

- Association of Consulting Structural Engineers of NSW
- Australian Building Codes Board
- Australian Institute of Building
- Building Designers Association of Australia
- Consult Australia
- CSIRO
- Engineers Australia
- Housing Industry Association
- Master Builders Australia
- National Precast Concrete Association Australia

This Standard was issued in draft form for comment as DR AS 5146.2:2015.

Standards Australia wishes to acknowledge the participation of the expert individuals that contributed to the development of this Standard through their representation on the Committee and through the public comment period.

Keeping Standards up-to-date

Australian Standards® are living documents that reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued.

Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments that may have been published since the Standard was published.

Detailed information about Australian Standards, drafts, amendments and new projects can be found by visiting www.standards.org.au

Standards Australia welcomes suggestions for improvements, and encourages readers to notify us immediately of any apparent inaccuracies or ambiguities. Contact us via email at mail@standards.org.au, or write to Standards Australia, GPO Box 476, Sydney, NSW 2001.

AS 5146.2:2015 (Incorporating Amendment No. 1)

Australian Standard[®]

Reinforced Autoclaved Aerated Concrete

Part 2: Design

First published as AS 5146.2:2015. Reissued incorporating Amendment No. 1 (February 2016).

COPYRIGHT

© Standards Australia Limited

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher, unless otherwise permitted under the Copyright Act 1968.

Published by SAI Global Limited under licence from Standards Australia Limited, GPO Box 476, Sydney, NSW 2001, Australia

ISBN 978 1 76035 354 4

PREFACE

This Standard was prepared by the Standards Australia Committee BD-106, Autoclaved Aerated Concrete.

This Standard incorporates Amendment No. 1 (February 2016). The changes required by the Amendment are indicated in the text by a marginal bar and amendment number against the clause, note, table, figure or part thereof affected.

The AS 5146 series comprises the following parts:

AS

5146 Reinforced autoclaved aerated concrete

5146.1 Part 1: Structures

5146.2 Part 2: Design

5146.3 Part 3: Construction

The objective of this Standard is to provide minimum requirements for the determination of the characteristic properties of Reinforced Autoclaved Aerated Concrete (AAC) members, for use in design in accordance with the requirements of AS 5146.1, *Reinforced autoclaved aerated concrete*, Part 1: *Structures*.

Statements expressed in mandatory terms in notes to tables and figures are deemed to be requirements of this Standard.

The terms 'normative' and 'informative' have been used in this Standard to define the application of the appendices to which they apply. A 'normative' appendix is an integral part of a Standard, whereas an 'informative' appendix is only for information and guidance.

CONTENTS

		Page
FOREW	'ORD	6
SECTIO	N 1 SCOPE AND GENERAL	
1.1	SCOPE	8
1.2	NORMATIVE REFERENCES	8
1.3	DEFINITIONS	10
1.4	NOTATION	13
1.5	INFORMATION TO BE PROVIDED IN DESIGN DOCUMENTS	20
SECTIO	N 2 MATERIAL AND MEMBER PROPERTIES	
2.1	GENERAL	22
2.2	AAC DENSITY	22
2.3	AAC CHARACTERISTIC COMPRESSIVE STRENGTH	22
2.4	AAC CHARACTERISTIC FLEXURAL STRENGTH	22
2.5	AAC MODULUS OF ELASTICITY	23
2.6	AAC CREEP	23
2.7	AAC MOISTURE CONTENT	23
2.8	AAC DRYING SHRINKAGE	23
2.9	AAC THERMAL EXPANSION	23
2.10	AAC FREEZE-THAW PROPERTIES	23
2.11	STEEL REINFORCEMENT STRENGTHS AND ELONGATION	23
2.12	DIMENSIONS OF REINFORCED AAC MEMBERS	24
2.13	CORROSION PROTECTION OF STEEL REINFORCEMENT	24
2.14	STRENGTH OF WELDED JOINTS IN STEEL REINFORCEMENT	24
2.15	CHARACTERISTIC BENDING CAPACITY OF REINFORCED	
	AAC MEMBERS	24
2.16	CHARACTERISTIC OUT-OF-PLANE SHEAR CAPACITY OF REINFORCED)
	AAC MEMBERS AND JOINTS	24
2.17	CHARACTERISTIC IN-PLANE SHEAR CAPACITY OF REINFORCED AAC	
	MEMBERS	24
2.18	CHARACTERISTIC IN-PLANE SHEAR CAPACITY BETWEEN LAYERS OF	7
	REINFORCED AAC MEMBERS	25
2.19	CHARACTERISTIC PUNCHING SHEAR CAPACITY OF REINFORCED AA	С
	MEMBERS	25
2.20	CHARACTERISTIC AXIAL LOAD CAPACITY OF REINFORCED AAC	
	MEMBERS	25
2.21	FIRE RESISTANCE LEVELS (FRLs) OF REINFORCED AAC MEMBERS	25
2.22	AAC THERMAL CONDUCTIVITY AND THERMAL RESISTANCE	25
2.23	AAC SOUND ATTENUATION	25

Page

SECTIO	ON 3 DETERMINATION OF AAC AND REINFORCEMENT PROPERTIES BY	
CALCU	JLATION	
3.1	GENERAL	26
3.2	AAC DENSITY	26
3.3	AAC CHARACTERISTIC COMPRESSIVE STRENGTH	28
34	AAC CHARACTERISTIC FLEXURAL STRENGTH AND CHARACTERISTIC	
5.1	TENSII E STRENGTH	29
35	A AC MODULUS OF ELASTICITY AND POISSON'S RATIO	20
3.6	A AC CREEP	30
3.0	AAC DRVING SHRINKAGE	. 30
2.0	AAC DETINO SHERINEAOL	
2.0	CTEEL DEINEODCEMENT DOODEDTIES	
5.9	STEEL KEINFORCEMENT FROFERTIES	52
SECTIO	ON 4 DETERMINATION OF REINFORCED AAC MEMBER ULTIMATE	
CAPAC	TITIES BY CALCULATION	
4.1	GENERAL	34
4.2	CHARACTERISTIC BENDING CAPACITY OF REINFORCED	
	AAC MEMBERS	36
4.3	CHARACTERISTIC OUT-OF-PLANE SHEAR CAPACITY OF	
	REINFORCED AAC MEMBERS	39
44	CHARACTERISTIC BEARING CAPACITY AND PUNCHING SHEAR	
1.1	CAPACITY OF REINFORCED AAC MEMBERS	44
15	PRIMARY TORSION AND COMBINED PRIMARY TORSION AND SHEAR	
4.J	CUADACTEDISTIC IN DIANE SUEAD CADACITY OF DEINEODOFD AAC	+ /
4.0	MEMDEDS	40
17		49
4./	CHARACTERISTIC SHEAR CAPACITY BETWEEN LAYERS OF	50
4.0	CHARACTERICTIC AVIAL LOAD CARACITY OF REDIFORCED AAC	
4.8	CHARACTERISTIC AXIAL LOAD CAPACITY OF REINFORCED AAC	50
	MEMBERS	50
SECTIO	ON 5 DETERMINATION OF REINFORCED AAC SERVICEABILITY	
CAPAC	TITIES BY CALCULATION	
5.1	GENERAL	59
5.2	LIMITATION OF STRESSES UNDER SERVICEABILITY CONDITIONS	. 59
53	SERVICEABILITY LIMIT STATES OF CRACKING—	
0.0	BASIC CONSIDERATIONS	60
5.4	SERVICEABILITY LIMIT STATES OF DEFORMATION	60
SECTIC	ON 6 DETERMINATION OF REINFORCED AAC FIRE RESISTANCE LEVELS	
(FRLs)	BY CALCULATION	
6.1	GENERAL	. 64
6.2	REQUIREMENTS FOR THE DETERMINATION OF FRLs	
	BY CALCULATION	64
SECTIO	N 7 DETERMINATION OF REINFORCED AAC THERMAL PROPERTIES BY	r
CALCI	ILATION	
7 1	GENERAL	65
7.1	DECLARATION OF A AC THERMAL CONDUCTIVITY AND THERMAL	. 55

7.2	DECLARATION OF AAC THERMAL CONDUCTIVITY AND THERMAL
	RESISTANCE

Page

SECTIO	DN 8 DETAILING	
8.1	GENERAL	66
8.2	TOLERANCES	66
8.3	DETAILING REINFORCEMENT	68
8.4	SUPPORT LENGTH	71
8.5	CHASES AND HOLES	72
8.6	DURABILITY	72
	RIGER	
APPEN		=0
A	ASSESSMENT OF STRENGTH VALUES FROM TEST RESULTS	73
В	DETERMINATION OF CHARACTERISTIC VALUE	75
С	AAC MEAN DRY DENSITY	77
D	AAC CHARACTERISTIC COMPRESSIVE STRENGTH	80
E	AAC CHARACTERISTIC FLEXURAL STRENGTH	84
F	AAC MODULUS OF ELASTICITY	88
G	AAC CREEP	93
Η	AAC MOISTURE CONTENT	98
Ι	AAC DRYING SHRINKAGE	101
J	AAC FREEZE-THAW PROPERTIES	106
Κ	DIMENSIONS OF REINFORCED AAC MEMBERS	111
L	CORROSION PROTECTION OF STEEL REINFORCEMENT	114
Μ	CORROSION PROTECTION OF STEEL REINFORCEMENT	118
Ν	STRENGTH OF WELDED JOINTS IN STEEL REINFORCEMENT	120
0	STEEL STRESSES IN UNLOADED AAC MEMBERS	122
Р	CHARACTERISTIC BENDING CAPACITY OF	
-	REINFORCED AAC MEMBERS	125
0	CHARACTERISTIC OUT-OF-PLANE SHEAR CAPACITY OF	
×	REINFORCED AAC MEMBERS AND JOINTS	132
R	CHARACTERISTIC IN-PLANE SHEAR CAPACITY OF	
К	REINFORCED A AC MEMBERS	137
S	CHARACTERISTIC IN PLANE SHEAR CARACITY RETWEEN LAVERS	
5	OF DEINEODOFD A AC MEMDEDS	144
т	CUADACTEDISTIC DINICUNIC SUEAD CADACITY OF	144
1	CHARACTERISTIC FUNCTIINU STEAR CAFACITT OF	140
TI	CHARACTERISTIC AVIAL LOAD CARACITY OF REINFORCED	148
	CHARACTERISTIC AXIAL LUAD CAPACITY OF REINFORCED	150
AAC		152
V	FIRE RESISTANCE LEVELS (FRLS)	159
W	MODULUS OF ELASTICITY AND MAXIMUM STRAIN OF AAC AND	176
	REINFORCING STEEL AT ELEVATED TEMPERATURE	176
Х	JOINTS BETWEEN AAC COMPONENTS SATISFYING	
	RESISTANCE TO FIRE	178
Y	TEMPERATURE PROFILES OF AAC WALL, FLOOR AND ROOF	
	COMPONENTS AND AAC BEAMS	181
Ζ	RESISTANCE TO FIRE—TABULATED DATA FOR WALLS WITH	
	MECHANICAL IMPACT	193
AA	MEANS FOR DEMONSTRATING COMPLIANCE WITH THIS STANDARD	195
BIBLIC	OGRAPHY	197
		· · · / /

FOREWORD

This Standard is to be read in conjunction with AS 5146.1 and AS 5146.3.

The members used in design may be—

- (a) mass-produced members for incorporation into structures in accordance with common practice and details, the basic characteristic capacities of which are determined in accordance with Sections 2 to 8 and reported in accordance with Section 1 of this Standard; or
- (b) customized members for incorporation into structures in a manner requiring particular design and detailing, the characteristic capacities which are relevant to the particular structure and are determined in accordance with Sections 2 to 8.

The characteristic properties of Reinforced AAC may be determined in accordance with this Standard by either calculation (using basic properties of AAC and reinforcement) or by test.

Such values are typically the 95 percentile characteristic values, determined with at least 75 percent confidence, before the application of capacity reduction factors.

The capacity reduction factors are specified in AS 5146.1. Factors for design actions (commonly called load factors), for use when designing Reinforced AAC structures, are also specified in AS 5146.1.

This Standard specifies methods for determining characteristic values or mean values, which are similar to the methods set out in European Standard EN 12602:2008+A1:2013, *Prefabricated reinforced components of autoclaved aerated concrete*, with the following exceptions:

- (i) This Standard does not permit the use of thermal prestress to enhance capacity.
- (ii) This Standard does not permit the use of bond between AAC and steel reinforcement to enhance reinforcement anchorage.
- (iii) This Standard requires design that differentiates between brittle failure bending capacity and ductile failure bending capacity.

This Standard has been written in a format compatible with Australian Standards that are in common use in Australia for determining design actions and other common materials. Some parts of this Standard (e.g. most of the nomenclature, formulae and detailed design) have been kept the same as those in EN 12602:2008+A1. This has been done intentionally, to ensure that Reinforced AAC designs in accordance with EN 12602:2008+A1:2013 and this Standard may be used interchangeably. This ensures that Reinforced AAC members designed to one of the Standards can be verified relatively easily for use in locations where the other Standard is in common use. This similarity to EN 12602:2008+A1 is acknowledged by Standards Australia.

It has been necessary to prepare a suite of Australian Standards for Reinforced AAC, including this Standard, for the following reasons:

- (A) EN 12602:2008+A1 includes European design actions and materials, which are not applicable in Australia. It is necessary to include reference to Australian Standards and Australian/New Zealand Standards for design principles, design actions, load factors, capacity reduction factors and materials testing.
- (B) EN 12602:2008+A1 includes a partial capacity reduction factor approach, which is not compatible with the current approach common in Australian Standards.
- (C) Additional formulae for the design for bending and definitions of ductile and brittle behaviour have been provided.

- (D) Thermal prestress and bond between reinforcement and AAC have been excluded.
- (E) Test details have been included in this Standard.
- (F) The tests have been modified to suit referenced Australian Standards, Australian laboratory practice and the requirements of AS 5146.1 for certain design information. This Standard also provides for testing to the equivalent EN standards, with suitable modification of the reporting where necessary.
- (G) This Standard has been written in a format compatible with Australian Standards and Australian/New Zealand Standards that are in common use in Australia for determining design actions and other common materials.

STANDARDS AUSTRALIA

8

Australian Standard Reinforced Autoclaved Aerated Concrete

Part 2: Design

SECTION 1 SCOPE AND GENERAL

1.1 SCOPE

This Standard specifies requirements and sets out methods for the determination of the characteristic properties of Reinforced Autoclaved Aerated Concrete members (Reinforced AAC), with a thickness not less than 75 mm, for use in structures where the design and construction comply with AS 5146.1.

NOTES:

- 1 This Standard uses the term AAC (autoclaved aerated concrete material) and Reinforced AAC (wall, floor or roof panels or other members, consisting of AAC into which steel reinforcement has been cast).
- 2 Typical uses of Reinforced AAC include loadbearing and non-loadbearing wall panels for both internal and external use, fascias and cladding, roofs, floors, beams, lintels, piers, noise barriers and earth retaining structures.
- 3 This Standard does not cover the design or use of unreinforced AAC blocks.
- 4 This Standard does not cover the use of Reinforced AAC subject to dynamic loads, except loads due to earthquake.
- 5 This Standard does not cover finishes such as render, tiling, plasterboard and the like, fixings or supporting structures.
- 6 This Standard applies only to cases where—
 - (a) the design has been performed by an experienced structural engineer and design actions, material properties, section properties, bending moments, shears and deflections have been determined in accordance with the provisions of this Standard; and
 - (b) the execution of such work is carried out under the direction of appropriately qualified persons who are experienced in Reinforced AAC construction and who understand the structural requirements specified herein.
- 7 This Standard should not be interpreted in a way that prevents design using alternative materials or methods not specifically referred to herein. However, the design of such members is outside the scope of this Standard.

Means for demonstrating compliance with this Standard are given in Appendix AA.

1.2 NORMATIVE REFERENCES

The following are the normative documents referenced in this Standard.

NOTE: Documents referenced for informative purposes are listed in the Bibliography.

AS	
1530	Methods for fire tests on building materials, components and structures
1530.4	Part 4: Fire-resistance tests for elements of construction
2193	Calibration and classification of force-measuring systems
2702	Acoustics—Methods for the measurement of road traffic noise