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that the distribution of vertical stress along the depth in embankment fills, which is
helpful to understand the behavior of piled embankments.
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FIG. 3. Comparisons between measured and calculated results.
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ABSTRACT: The effect of micropiles on soil reinforcement under static and dynamic
loadings was studied. Embankment on untreated soil and treated soil by micropiles
were modeled using the finite element code PLAXIS. The displacement caused by
embankment static loading and acceleration of the embankment caused by seismic
loading were calculated and compared. It was found that micropiles treated soil can
greatly reduce the settlement of the embankment and mitigate seismic response of the
embankment. The results of this study provide valuable information about the design
and application of micropiles.

INTRODUCTION

Micropiles are small diameter grouted piles that are traditionally used in foundation
retrofit. Micropiles can also be installed in almost any ground condition. Experimental
evidence has indicated that micropiles behave well under seismic loadings due to their
high flexibility. Moreover, observations in the 1995 Kobe Earthquake demonstrated
the good performance of friction piles under seismic loading (Wong, J.C.,2004).
However, the seismic behavior of micropiles is not fully understood due to limited
number of tests both in full and model scale, as well as the limited amount of
numerical modeling studies for micropiles. Some researchers such as Yamane,T. et al.
(2000), Wong, J.C.(2004), Shanzhi Shu.(2005) and Wang, Liyan et al.(2005) have
studied on mechanical characteristics of micropiles. The dynamic analysis of soil-pile-
structure interaction is a very complex problem (Nogami,T.et al.,1992; Wu,guoxi et
al.,1997; Boulanger, Ross W. et al.,1999; Lok,M.H.,1999; Ousta,R.et al.,2001; and
Surendran Balendra, 2005). The Finite Element (FE) method provides a tool to
understand the seismic behavior of micropiles. The finite element code PLAXIS with
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dynamic analysis function has been used to model the soil and micropiles system, and
analyze the dynamic characteristics of unreinforced soil and micropile reinforced
foundation.

THE STATIC ANALYSIS OF MICROPILES
The finite element model for insitu four soil layers strata was generated. The soil

including fill was treated as perfectly elastic-plastic materials in the simulation.
Parameters of soil used in the simulation are listed in the Table 1.

Table 1. Soil Properties for the Micropile Foundation Analysis

Soil Unsaturated Satlljl:;?tted Cohesion Friction | Young’s | Possi-
Type Unit Weisght Weight (KN/m?) Angle MOdullzlS on’s
(kN/m”) (KN/m’) (degrees) | (kN/m”) | Ratio
Fill 16 20 1 30 8000 0.3
Clay Silt 16 18 5 25 10000 0.35
Soft soil 17 18.5 7 20 5000 0.35
Coarse 17 20 1 34 30000 | 03
Sand
} | - | }
@
y I
el
Q L@
M= +F T2
a. Untreated by micropiles b. Treated by micropiles

FIG. 1. Problem Setting and the FEM Model.

The micropiles with diameter of 0.2 m and length of 14 m were modeled using the
5-node beam element. The interactions between the soil and the piles were taken into
account by setting interface elements between the soil and the pile. In formulating the
stress-strain behavior at the soil- pile interface, the thickness of interface was assumed
as 0.1 to 0.01 times the length of corresponding interface element. The corresponding
strength reduction factors were selected based on both the material properties of the
soil and the pile.
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The boundary conditions were set as the standard boundary conditions. The
displacements in all directions at the bottom boundary were fixed; the boundaries at
both sides can only move in the vertical direction. When the geometry and boundary
condition setting was complete, the finite element mesh was generated. In order to
consider the possible large stress gradient, the meshes are refined at the soil and pile
interface.

The total deformation of the embankment is shown in Figure 2. Figure 2(a) shows
that the total displacement profile for the whole geometry in the last times step; the
maximum displacement at this time step is 33.24 X 10 m. Figure 2(b) shows the
maximum displacement in the last time step is 10.35 X 10™ m. The displacement plot
shows the maximum displacement at the top of embankment which is untreated is
much higher than the displacement at the top of embankment which is reinforced by
micropiles. The result shows that micropiles treated soil can greatly reduce the
settlement of the embankment.
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a. Untreated by micropiles b. Treated by micropiles
FIG. 2. FEM plot of extreme total displacement.

THE DYNAMIC ANALYSIS OF MICROPILES

The dynamic analysis uses the same geometry | Table 2. P-wave and S-wave
as that of the static analysis. The triaxial Velocity of Soil
unloading stiffness E, is set as 3 times as the Soil Type V,(m/s) | V(m/s)
triaxial loading stiffness E,.f and the oedometer Fill 81.22 43 .41
loading stiffness Eqq is set the same as the Clay Silt 99.15 47.63
triaxial loading stiffness Err. The corresponding Soft soil 68.01 32.67
shear modulus G and p-wave velocity Vy and s- ["coarse Sand | 152.6 81.56

wave velocity Vg are determined based on
theories of continuum mechanics and wave propagation:

v = Bt yhere g, = LTVE (1)
i P 1+v)1-2v)
v, = G where G = E 2
P 2(1+v)
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The boundary conditions were changed to the standard earthquake boundary that
was automatically generated as absorbent boundaries (Plaxis, 2002). The left-hand and
right-hand boundaries have prescribed displacement u#, = 0.01 m and the bottom
boundary has prescribed displacement u, =0.00 m.

The material damping was considered for the soil. In PLAXIS, a global material
damping term (the Rayleigh damping) is assumed, which is proportional to the mass
and stiffness of the system. The damping matrix can be written as a combination of the
mass matrix and the stiffness matrix:

[Cl=alM]- plK] 3)

where [C ] is damping matrix [M ] is mass matrix [K ] is stiffness matrix
| gt

| |
— T
a. Untreated by micopiles b. Treated by micopiles

FIG. 3. FEM Dynamic Model.

The Rayleigh coefficients oand Bare difficult to determine from soil tests. Based on
previous literatures, they can be estimated from the fundamental frequency of the pile-
soil system and the hysteretic damping ratio. However, this information was not
available for such purpose in this example. The Rayleigh coefficients were assumed as
o= 0.01 for mass matrix and B= 0.01 for the stiffness matrix. Since there is lack of
recorded strong ground motions, the default ground motion file named 225a.smc (see
FIG. 4.) in PLAXIS is set as the rock base ground motion(Plaxis, 2002). The
calculation was carried out to 250 time steps with a time interval 10 seconds.
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FIG. 4. Record of upland earthquake.
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Figure 5 and Figure 6 show time-acceleration curves of point in the middle of the
embankment. Figure 5 shows that the maximum acceleration at point E (22, 9) is
1.466 m/s* for embankment on untreated soils and 1.065m/s> for embankment treated
by micropiles.

By comparing Figure 5 and Figure 6, it is found that the acceleration at point E (22,
9) of the untreated embankment is much higher than the treated embankment. The
result shows that the piles are effective in increasing the earthquake resistance of soil.
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FIG. 5. Time-acceleration curves of E Point before the soil treatment.
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FIG. 6. Time-acceleration curves of E Point after the soil treatment.
CONCLUSIONS

The displacements and dynamic characteristics of pure soil foundation and
micropiles reinforced foundation were analyzed using finite element code PLAXIS.
The displacement caused by embankment static loading and acceleration of the
embankment caused by seismic loading were calculated and compared. It is found that

This is a preview. Click here to purchase the full publication.



https://www.civilenghub.com/ASCE/113131114/Recent-Advancement-in-Soil-Behavior-in-Situ-Test-Methods-Pile-Foundations-and-Tunneling?src=spdf

144 GEOTECHNICAL SPECIAL PUBLICATION NO. 192

micropiles treated soil can greatly reduce the settlement of the embankment and
mitigate seismic response of the embankment. The results of this study provide
valuable information about the design and application of micropiles.
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ABSTRACT: Based on the vertical static load test results on a test pile, located in the
soft soil, the load transfer mechanism and bearing behavior of super-long filling piles
is first discussed. Then, a method of predicting the axial bearing capacity of
super-long piles by the pile top settlement is advised. By introducing the linear
elastic-fully plastic model and tri-broken-line model to fit the development of shaft
resistance and tip resistance respectively, analytical solutions of axial load capacity is
derived under elastic stage of the subsoil. Finally, the present method is applied to
analyze the data from the test pile, from which good agreement between the predicted
and measured pile top load-settlement curves is found. The results also show that
buckling stability analysis and deformation checks are necessary for super-long filling
piles, and the axial bearing capacity of super-long piles should be controlled by the
allowable settlement on the pile top.

INTRODUCTION

The specific definition of super-long filling piles is not clear so far, but it generally
refers to piles whose length is more than 50 m or length to diameter ratio (1/d) is 100
(Lin et al., 1999), and the bearing capacity is mainly due to shaft resistance. Due to the
super length, this kind of piles behaves quite differently. Under normal working load,
the tip resistance of super-long pile is only a small portion of the total capacity and can
be neglected. In addition, studies by Zhu et al (2003) shows that: (i) for a given pile
vertical load, if all other factors remain constant, the pile top settlement does not
increase with the pile length; (ii) the state of maximum pile shaft resistance or failure
of pile shaft structure can be regarded as the ultimate bearing state of the super-long
pile. To determine the axial bearing capacity of the super-long pile top settlement is
very important (Lu 1981).
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In recent years, super-long filling piles are widely used. Nevertheless, due to the
complex load transfer mechanism, relevant design methods have not been presented
(Poulos 1989; Yang 1998). Therefore, traditional theories have to be adopted in design
and calculation. However, for super-long filling piles, the allowable pile top settlement
is usually determined by the serviceability criteria of the superstructure and will
control the axial load capacity (Zhao 2000; Wang et al. 1999). A large number of pile
tests (Shi and Liang 1994) show that, when the //d exceeds a certain value, the tip
resistance mobilization will decrease or even not mobilize any more. Thus, the validity
of calculating the axial load capacity of super-long piles by traditional methods
remains to be discussed. Because of these reasons, the piles are generally lengthened
to satisty the bearing capacity in design, but this will lead to unnecessary waste.
Fortunately, the load transfer mechanism of super-long piles have already been studied
by some researchers (Kraft 1981; Cao 1986).

To discuss the load transfer mechanism and more suitable analysis methods for
super-long piles, a field load test was first done on a test pile in the typical soft soil
area of Dongting Lakes in China. Then, a method to determine the vertical bearing
capacity of super-long piles by the pile top settlement is proposed in this paper.

EXPERIMENTAL M& g
STUDY Om  Ground surface P
(1) Muddy Clay ”
Test Desi 70,854, w=29.7%, c=5.5kPa &
est Design 12.5m o©=19.9] 3Es=0.549MPa = Steel Pile
(2) Clay T Casing

The soil around the test  21.6 m #=0.756,w=26.6%,c=7.4kPa
¢=14.2j aEs=0.253MPa

pile is shown in Fig. 1. The
test pile with a design 30,7 m (3) Fine Sand (A): N63.5=37
42.3 m (4) Sandy Gravel: N63.5=29
45.2 m (5) Sandy Cobble: N63.5=55
54.1 m (6) Fine Sand (B)

60.0m

diameter of 1.0 m and
length of 60 m was formed
by stabilized liquid method.
A steel pipe of 1.3 m
outside diameter, 7 mm (7) Argilliferous Siltstone
wall thickness and 10 m d=1.0m
length was used to support
the upper unstable segment 90.1m
of the pile bore. The pipe
was driven 9.2 m into the
ground. The measured thickness of sediment under the pile tip was 50 mm. Anchorage
of the counter-force system was provided by a pair of 1.8 m diameter tension piles
each with an uplift capacity of about 9 MN (Fig. 2).

Four dial gages were placed symmetrically to measure the pile top settlement.
Another 2 dial gages are placed around the steel drive pipe on pile top to observe the

Fig. 1. Soil profile around the test pile.
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settlement of the pipe. In order to
determine the distribution of axial force
accurately, two kinds of strain gauges,
ie., steel and concrete, were used. In
total 34 groups of 136 fully airtight
concrete strain gauges were embedded in
the test pile.

Test Results

The final steady load on the test pile
was 16.72 MN and corresponding top
settlement was 35.31 mm. In the loading
process, when the load was increased to
17.28 MN, the pile top settlement
increased sharply, and exceeded the
maximum range of the indicating gauge
and could not keep stable. At the same

/ 0/
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Anchor P ‘ Test Pile [Anchor Pile

(R=0.5m) (R=0.9m)
Reaction Beam
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1-1 section
Fig. 2. Sketch of the test equipment.

4.5m

time, the load only kept stable for 3 minutes and then a blare sent out down from the
ground. After that, obvious offset of the pile top was observed, and the load decreased
from 17.28 MN to 11.00 MN quickly. Furthermore, crack appeared in the ground
surface around the pile top. From these, buckling failure of the pile shaft was

determined.

The measured pile top load and settlement is shown in Fig. 3. The calculated axial
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Fig. 4. Pile shaft axial force distribution.
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