
 

Table 1. Pile and soil material properties used in numerical simulation 

Material Model 

Modulus 

E 

(MPa) 

Density

γ 
(kN/m

3
)

Poisson�s 

ratio υ 
Cohesion

c (kPa) 

Friction 

angle φ 

(º) 

Lateral 

coefficient

K0 

Concrete 

pile 

Isotropic 

elastic 
20,000 25 0.2   1.0 

Soft clay 
Mohr-

Coulomb 
5 18 0.3 3 20 0.65 

Sand 
Mohr-

Coulomb 
25 20 0.3 0.1 45 0.5 

 

 

  

FIG. 1. Geometric model, and typical finite difference meshes for 3×3 XCC pile 

group (1/4 model). 
 

 

Large-scale Model Test Summary 

 

Large-scale model test system is composed of test site, loading system and 

measuring system, etc. The model bank is located in Hohai University, Nanjing, 

China, and its size is 5 m × 4 m × 7 m (length × width × height).  

 

 

FIG. 2. The cross-section of the XCC pile for large-scale model test. 
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Table 2. Mechanical parameters of large-scale model test soils 

Material 
Cohesion 

c (kPa) 

Internal friction 

angle φ (°) 

Moisture content 

ω (%) 

Natural density 

ρ (g.cm
-3

) 

Clay 27.6 21.2 16.7 1.9 

Sand 17.6 25.9 5.1 1.5 

   

The loading system is composed of hydraulic jack, and reaction beam etc. The 

measuring system is composed of load cell, reinforcement stress meters, earth 

pressure cell, frequency instrument and displacement meter, etc. The cross-section of 

XCC pile is shown in Fig. 2. Table 2 is the mechanical parameters of model test soils. 

 

Numerical Model Verification 

 

In order to simulate experimental conditions, the size and parameters of 

numerical model were kept the same as those under experimental conditions (Wang et 

al. 2010). The load settlement curves (Q-s) of numerical simulation and measured 

results are shown in Fig. 3.  
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FIG. 3. The comparison of curves of pile head load versus settlement (Q-s). 
 

 

INFLUENCING FACTOR ANALYSIS  
 

Influence Analysis of Pile Positions 
 

Fig. 4 (a) shows that pile top settlement increases with pile head load 

increasing for each pile in different positions, and the relationships are nearly linear. 

Under the same loading grade, the settlement of interior pile is smaller than that of 

edge pile and corner pile. It may be because the masking effect of pile-pile affects 

interior pile more obviously than edge pile and corner pile. Fig. 4 (b) shows that when 

piles in different positions (contains single pile), the distributions of pile axial force 

along pile depth are uniform, and the values of interior pile is smaller than that of 

edge pile and corner pile. 
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FIG. 4. The curves of Q-s (a), and distributions of axial force of pile shaft along 

pile depth (b) under different pile positions. 
 

 

Influence Analysis of the Stiffness of Pile End Soil 

 

Fig. 5 (a) shows that the curves of pile top settlement and pile head load under 

different modulus ratios of pile side soil with pile end soil are uniform, and the 

settlement increases with load increasing. Fig. 5 (b) shows that the distributions of the 

axial force of pile shaft along pile depth under 1200 kN pile head load are uniform, 

and the pile shaft friction develops more fully when pile end soil becomes less stiff. 
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FIG. 5. The curves of Q-s (a), and distributions of axial force of pile shaft along 

pile depth (b) under different soil modulus ratios. 
 

 

Influence Analysis of the Modulus of Pile 

  

Fig. 6 (a) shows that the distributions of the axial force of pile shaft along pile 

depth under different pile head load are uniform, and increases with load increasing. 

Fig. 6 (b) shows that the distributions of the axial force of pile shaft along pile depth 

under 1400 kN pile head load are uniform, and the values are approximately equal. 

Fig. 7 (a) shows that the curves of pile top settlement and pile head load under 

different friction coefficient of pile-soil are uniform, and the ultimate capacity 
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increases with friction coefficient of pile-soil increasing. Fig. 7 (b) shows that the 

distributions of the axial force of pile shaft along pile depth with different friction 

coefficient of pile-soil under 1400 kN pile head load are uniform, and the values are 

approximately equal. 
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FIG. 6. The distributions of axial force of pile shaft along pile depth under 

different load (a), and under different pile modulus (b). Influence Analysis of the 

friction coefficient of pile-soil  
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FIG. 7. The curves of Q-s (a), and distributions of axial force of pile shaft along 

pile depth (b) under different friction coefficient of pile-soil. 
 

 

CONCLUSIONS 

 

Based on a series of numerical studies presented in this paper, the following 

conclusions can be drawn: 

 

The distributions of axial force of pile shaft and compressive capacity of XCC 

pile group are similar to those of circular pile group, and the values are larger.  
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The compressive capacity of XCC pile group increases with the increasing of 

stiffness of pile end soil, the increasing of pile modulus, and the increasing of friction 

coefficient of pile-soil. 

 

These conclusions obtained in this study will be helpful to practicing 

engineers using XCC pile this new technology. 
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ABSTRACT 
 

In this paper, a kind of the Mesh free method was utilized to conduct a series of 

computational modeling to evaluate the bearing behavior of extended-length piles. The 

computational program code and boundary conditions were generated based on the 

elastic-plastic behavior of the surrounding soil, reinforcements, and the 

non-continuous interface between the piles and the soil.  This was then verified with the 

Marc (a commercial available software package) by analyzing a classical mechanics 

problem. Lastly, the bearing capacity and response behavior of long-length bridge pile 

were analyzed including the relationship between the piles length-diameter ratio, pile 

settlement, and the non-linear behavior of the load-settlement curve. Overall, the 

results indicated that the optimal length of the pile is directly related to the stiffness of 

the soil, i.e., the stiffer the soil, the longer the allowable pile length. 

 
 

INTRODUCTION 

 

Although a lot of research has indicated that the extended-length and 

large-diameter piles are usually of high ultimate bearing capacity for deeper 

penetration depths, the allowable bearing capacity of these piles is better determined by 

the settlement limitation method (Zhao, 2004, 2006; Liu, 2004; Feng, 2005; Zhong, 

2005).Thus, it is of great significance to accurately predict and model the 

load-settlement curve so that a rational allowable bearing capacity can be determined. 

Four different theories and analysis methods are often used for pile settlement analysis, 

namely: the load transfer, the elastic mechanics, the numerical, and the empirical 

method, respectively.   

 

One of the commonly used numerical analysis methods in engineering 

applications is the finite element method (FEM).  However, the FEM establishes its 

discrete equations based on the grid method, which is often associated with poorly 

distorted elements and boundary conditions, thus resulting in noticeable errors 

particularly when solving large deformation problems.   
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To overcome some of these limitations, the Meshfree method was formulated 

(Pang, 1999; Li, 2001; Liu, 2003). Unlike the FEM, the Meshfree method establishes 

its approximate functions based on nodes and not grids; thus, the level of accuracy can 

be enhanced because there is no need to generate grids and do a re-mesh modeling. 

Accordingly, the Meshfree Local Petrov-Garlerkin method (MLPG) was utilized in 

this study to evaluate the bearing capacity and response behavior of extended-length 

piles. Results of these numerical analyses are presented and discussed in this paper. 

 
 

THE ELASTO-PLASTIC MLPG METHODS 

 

The Weighted Residual Method 

 

A piles problem can be categorized as a typical solid mechanics problem, which 

can be modeled using basic mechanics equations but taking into account the necessary 

boundary conditions. In general, the unknown function of a structure or an element 

should follow the basic equilibrium rules as follows: 

 

1

1

2

[ ( )]

[ ( )]
[ ( )] 0    in domain

[ ( )]m

A

A

A

⎧ ⎫
⎪ ⎪
⎪ ⎪= = Ω⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

u x

u x
A u x

u x

M
（  ）    （1） 

 

With the boundary conditions given as： 

 

2

1

2

[ ( )]

[ ( )]
[ ( )] 0     on boundary 

[ ( )]m

B

B

B

⎧ ⎫
⎪ ⎪
⎪ ⎪= = Γ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

u x

u x
B u x

u x

M
（ ）   （2） 

 

Where Γ is the boundary condition of Ω and x=[x, y, z]
T
 is the arbitrary nodal point of 

analysis. The unknown function u(x) may be a vector field of several variables and it is 

often molded using a displacement variable. The equivalent integral form of the 

differential Equations (1) and (2) is: 

 

[ ( )]d [ ( )]d 0T T

Ω Γ
Ω + Γ =∫ ∫ν A u x ν B u x      （3） 

 

Where ν and ν  are the test and weight functions, respectively, and they are of the m1
th

 

and m2
th

 order, respectively. The equivalent weak form can then be obtained through 

the partial integration of  Equation (3): 

 

( ) [ ( )]d ( ) [ ( )]d 0T T

Ω Γ
Ω + Γ =∫ ∫C ν D u x E ν F u x     （4） 
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The Moving Least Squares Method 

 

Assume that u(x) is the unknown function defined in the domain Ω, while the 

function value on N nodes (denoted as xI and I=1, 2, �,N) in the domain is known as               

uI＝u(xI). If x is the point of analysis in the domain, then the approximation function 

value at point x can be expressed as follows: 
 

h T

I I( , ) ( ) ( )  ,     1, 2,...,u I n= =x x p x a x      （5） 

 

Where pi(xI) is the basis function and a(x) is the coefficient matrix, which can be 

expressed as: 

 

a(x)=[a1(x), a2 (x),�, am (x)]
T     （6） 

 

Where ai(x) are the undetermined coefficients related to x and m is the number of the 

basic functions. The basis function has the simplest form as a 1
st
 order single-type 

equation, and its polynomial basis function can be written as follows: 

 
T T 2 2( ) ( , ) [1, , , , , ,..., , ]m mx y x y xy x y x y= =p x p     （7） 

 

Local approximation functions can then be obtained using Equation (8) 

 

h T 1 T

I I I

1

( , ) ( ) ( ) ( ) ( ) ( )
N

I

I

u N u−

=

= = =∑x x p x A x B x u x N x u    （8） 

 

Where NI is the shape function, with its specific form written as follows: 

 
T 1

I I( ) ( ) ( ) ( )N −=x p x A x B x       （9） 

 

The N represents the matrix of the shape functions, whose specific form is 

given as follows: 

 
T 1

1 2, N( ) ( ) [ , ]N N N−= =N P A x B x K      （10） 

 

T T

I I I I I

1

( ) ( ) ( ) ( ) ( )
N

I

ω
=

= − = −∑A x x x p x p x P W x x P    （11） 

 

1 2 N

T

1 I 1 2 I 2 N I N I

                                     ( ) [ , , , ]

[ ( ) ( ), ( ) ( ), , ( ) ( )] ( )ω ω ω

=

= − − − = −

B x B B B

x x p x x x p x x x p x P W x x

K

K
（12) 

 

Where ω is the weight function that controls the supporting domain. 
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The Discretization of the Basic Equation of MLPG 

 

When calculating the discrete basic equation of MLPG, the residual error 

should be zero in the r local domain Ωi and boundary Γi. In theory, the mechanics 

equilibrium conditions and boundary conditions are satisfied once the modeling 

domain is covered by the union of r local domain Ωi. However, Atluri (1998) pointed 

out that desirable results could be obtained even if the conditions are not fully satisfied. 

The test and trial functions are selected from a different function space and the 

corresponding equivalent integral form is given as follows: 

 

i i

T T

i j j i i j j i

1 1

( ) d ( ) d ,       1, 2,...,
N N

j j

i r
Ω Γ

= =

⎡ ⎤ ⎡ ⎤
Ω + Γ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫W A N x u W B N x u   （13） 

 

Where i i iLΓ = ∂Ω U is the boundary of a local domain iΩ , i∂Ω is part of the boundaries 

Γ right in the local domain (meaning i i∂Ω = Γ ΓI ), and iL is the rest of the boundaries 

besides i∂Ω  (as shown in Fig. 1). Boundary conditions are then determined on i∂Ω  not 

on iL . For a local domain, which is totally in the global domain, there are no 

intersections between iΓ  and Γ , then i∂Ω = ∅ ，and i iLΓ = . The local domain iΩ can 

then be selected as a circle, an ellipse, or a rectangle for a two-dimensional analysis. 

 

 
Fig.1. Schematic of the Local Domain and Boundaries. 

 

The equivalent weak form can be obtained by partial integration of Equation 

(13) to Equation (14) as follows: 

 

( ) ( )
i i

T T

i j j i i j j i

1 1

( ) d ( ) d ,       1,2,...,
N N

j j

C D E F i r
Ω Γ

= =

⎡ ⎤ ⎡ ⎤
Ω + Γ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫W N x u W N x u  （14） 

 

Equations (13) or (14) represents the r set of equations, and if r = N, then the quantity of 

the local-domain is equal to the nodes. Then, the N undetermined coefficients can be 

easily solved; otherwise, if r> N, the minimum square method should be introduced. 
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The Elastic-Plastic Behavior of Materials 

 

In the elasto-plastic model, the total deformation is divided into two parts; the 

elastic deformation that follows Hook�s law and the plastic deformation that follows 

plastic deformation. Three assumptions should be made in modeling the plastic 

deformation: 1) the failure criteria, 2) the hardening law, and 3) the flow rule. These 

three assumptions differ with the elasto-plastic model. Due to similarity with FEM, 

details of these assumptions are not shown in this paper [Xu, 1995]. 

 
 

THE INTERFACE BETWEEN PILES AND SOIL 
 

In piling and soil mechanics engineering, inhomogeneous materials should be 

taken into account when considering piles and soil interaction, which causes 

discontinuity in the derivation of the displacement function. The traditional FEM deals 

with this problem by generating grids and setting the grid interface to overlap the 

physical interfaces. However, there are no grids generated in the Meshfree method, so a 

new approach should be introduced to take into account these aspects. 

 

Cordes (1998) proposed a simplified approach to deal with inhomogeneous 

materials; namely the visibility criteria. In the calculation process, a program should 

check out what kind of material the calculation point x belongs to. Then, a circular 

domain of influence with radius rmI is employed to find the nodes in it. The influence of 

the nodes, which are both in the influence domain and the same material as point x,  

will be taken into account to approximate the displacement at point x, as shown in Fig. 

2. 

 

 

(a) Homogeneous materials；                 (b) Inhomogeneous materials 

Fig.2. The Influencing Domain in Homogeneous and Inhomogeneous Materials. 

 

The trial function, test function, and their derivatives follow these rules and are 

discontinuous on the interfaces between different materials, so the following constraint 

conditions should be applied to the interface Γs : 

 

( )d 0
s

+ −

Γ
− Γ =∫ u u        （15） 
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