RISK-BASED CORRECTIVE ACTION AND BROWNFIELDS RESTORATIONS

EDITED BYCRAIG H. BENSON, JAY N. MEEGODA, ROBERT B. GILBERT AND SAMUEL P. CLEMENCE

RISK-BASED CORRECTIVE ACTION AND BROWNFIELDS RESTORATIONS

PROCEEDINGS OF SESSIONS OF GEO-CONGRESS 98

SPONSORED BY
The Geo-Institute of the American Society of Civil Engineers

October 18–21, 1998 Boston, Massachusetts

EDITED BY
Craig H. Benson
Jay N. Meegoda
Robert B. Gilbert
Samuel P. Clemence

Abstract: This proceedings, Risk-Based Corrective Action and Brownfields Restorations, contains papers presented at sessions sponsored by the Geo-Institute of ASCE in conjunction with the ASCE Annual Convention held in Boston, Massachusetts, October 18-21, 1998. These papers describe the tools and methods employed in risk-based corrective action, provide illustrative examples through case histories with an emphasis on brownfields restoration. This proceeding provides practitioners with an introduction to the concepts that are employed and the lessons that have been learned by others.

Library of Congress Cataloging-in-Publication Data

Risk-based corrective action and Brownfields restorations / edited by Craig H. Benson ... [et al.].

-(Geotechnical special publication; no. 82) Includes bibliographical references and index. ISBN 0-7844-0389-9

1. Industrial real estate-United States-Congresses. 2. Brownfields-United States-Congresses. 3. Environmental risk assessment-United States-Congresses. 4. Hazardous waste site remediation-United States-Congresses. 5. Real estate development-United States-Congresses. I. Benson, Craig H. II. Series.

HD257.5.R57 1998

98-33992

363.739'66'0973-dc21 CIP

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents. Photocopies. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$8.00 per chapter plus \$.50 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0389-9/98/\$8.00 + \$.50 per page. Requests for special permission or bulk copying should be addressed to Permissions & Copyright Dept., ASCE.

Copyright © 1998 by the American Society of Civil Engineers, All Rights Reserved. Library of Congress Catalog Card No: 98-33992 ISBN 0-7844-0389-9 Manufactured in the United States of America.

Geotechnical Special Publications

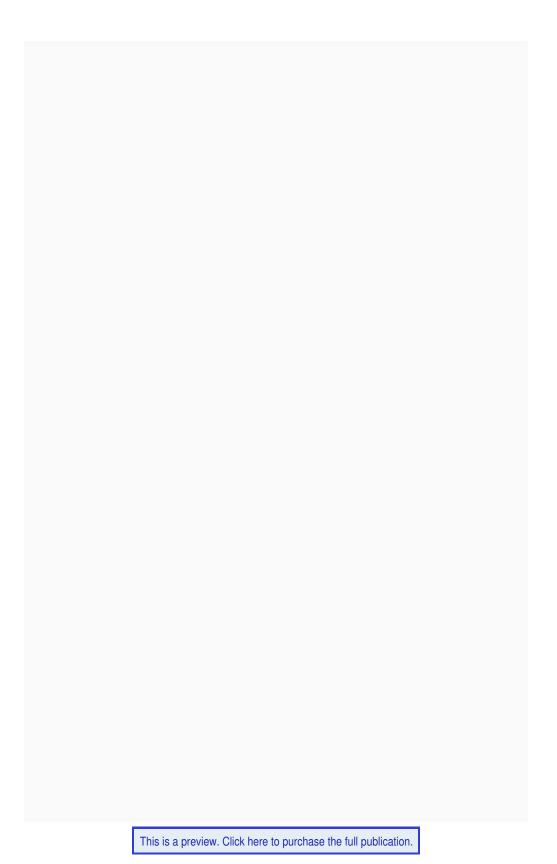
1	Terzaghi Lectures
2	Geotechnical Aspects of Stiff and Hard Clays
3	Landslide Dams: Processes, Risk, and Mitigation
4	Tiebacks for Bulkheads
5	Settlement of Shallow Foundation on Cohesionless Soils: Design and
	Performance
6	Use of In Situ Tests in Geotechnical Engineering
7	Timber Bulkheads
8	Foundations for Transmission Line Towers
9	Foundations & Excavations in Decomposed Rock of the Piedmont Province
10	Engineering Aspects of Soil Erosion, Dispersive Clays and Loess
11	Dynamic Response of Pile Foundations-Experiment, Analysis and Observation
12	Soil Improvement: A Ten Year Update
13	Geotechnical Practice for Solid Waste Disposal '87
14	Geotechnical Aspects of Karst Terrains
15	Measured Performance Shallow Foundations
16	Special Topics in Foundations
17	Soil Properties Evaluation from Centrifugal Models
18	Geosynthetics for Soil Improvement
19	Mine Induced Subsidence: Effects on Engineered Structures
20	Earthquake Engineering & Soil Dynamics II
21	Hydraulic Fill Structures
22	Foundation Engineering
23	Predicted and Observed Axial Behavior of Piles
24	Resilient Moduli of Soils: Laboratory Conditions
25	Design and Performance of Earth Retaining Structures
26	Waste Containment Systems: Construction, Regulation, and Performance
27	Geotechnical Engineering Congress
28	Detection of and Construction at the Soil/Rock Interface
29	Recent Advances in Instrumentation, Data Acquisition and Testing in Soil
20	Dynamics
30	Grouting, Soil Improvement and Geosynthetics
31	Stability and Performance of Slopes and Embankments II
32 33	Embankment of Dams-James L. Sherard Contributions
34	Excavation and Support for the Urban Infrastructure Piles Under Dynamic Loads
35	Geotechnical Practice in Dam Rehabilitation
36	Fly Ash for Soil Improvement
37	Advances in Site Characterization: Data Acquisition, Data Management and Data
37	Interpretation
38	Design and Performance of Deep Foundations: Piles and Piers in Soil and Soft
30	Rock
39	Unsaturated Soils
40	Vertical and Horizontal Deformations of Foundations and Embankments
41	Predicted and Measured Behavior of Five Spread Footings on Sand
42	Serviceability of Earth Retaining Structures
43	Fracture Mechanics Applied to Geotechnical Engineering
40	Tracture internation Applied to Geolechnical Engineering

44	Ground Failures Under Seismic Conditions
45	In Situ Deep Soil Improvement
46	Geoenvironment 2000
47	Geo-Environmental Issues Facing the Americas
48	Soil Suction Applications in Geotechnical Engineering
49	Soil Improvement for Earthquake Hazard Mitigation
50	Foundation Upgrading and Repair for Infrastructure Improvement
51	Performance of Deep Foundations Under Seismic Loading
52	Landslides Under Static and Dynamic Conditions–Analysis, Monitoring, and Mitigation
53	Landfill Closures-Environmental Protection and Land Recovery
54	Earthquake Design and Performance of Solid Waste Landfills
55	Earthquake-Induced Movements and Seismic Remediation of Existing Foundation
55	and Abutments
56	Static and Dynamic Properties of Gravelly Soils
57	Verification of Geotechnical Grouting
58	Uncertainty in the Geologic Environment
59	Engineered Contaminated Soils and Interaction of Soil Geomembranes
60	Analysis and Design of Retaining Structures Against Earthquakes
61	Measuring and Modeling Time Dependent Soil Behavior
62	Case Histories of Geophysics Applied to Civil Engineering and Public Policy
63	Design with Residual Materials: Geotechnical and Construction Considerations
64	Observation and Modeling in Numerical Analysis and Model Tests in Dynamic
04	Soil-Structure Interaction Problems
65	Dredging and Management of Dredged Material
66	Grouting: Compaction, Remediation and Testing
67	Spatial Analysis in Soil Dynamics and Earthquake Engineering
68	Unsaturated Soil Engineering Practice
69	Ground Improvement, Ground Reinforcement, Ground Treatment: Developments
	1987-1997
70	Seismic Analysis and Design for Soil-Pile-Structure Interactions
71	In Situ Remediation of the Geoenvironment
72	Degradation of Natural Building Stone
73	Innovative Design and Construction for Foundations and Substructures Subject to
~.	Freezing and Frost
74	Guidelines of Engineering Practice for Braced and Tied-Back Excavations
75	Geotechnical Earthquake Engineering and Soil Dynamics III
76	Geosynthetics in Foundation Reinforcement and Erosion Control Systems
77	Stability of Natural Slopes in the Coastal Plain
78	Filtration and Drainage in Geotechnical/Geoenvironmental Engineering
79	Recycled Materials in Geotechnical Applications
80	Grouts and Grouting: A Potpourri of Projects
81	Soil Improvement for Big Digs
82	Risk-Rased Corrective Action and Brownfields Restorations

PREFACE

Vast resources have been expended during the last two decades on remediating sites contaminated as a result of poor waste management practices in the past. Recently, the costs of these remedial actions have come under scrutiny, particularly regarding the ultimate reduction in risk that is obtained relative to the economic resources committed. Risk-Based Corrective Action (RBCA) and Brownfields Restoration are an outgrowth of this scrutiny, and are now playing a significant role in remediating contaminated sites. In recent years, RBCA has become more widely used, and has become an integral part of the burgeoning brownfields programs. RBCA provides the necessary framework for balancing health and environmental risks with costs with the ultimate objective of implementing sensible remedial actions. Brownfields restoration is a reasonable and economical approach for remediating contaminated land that is intended for industrial use.

This Geotechnical Special Publication (GSP) was developed to describe the tools and methods employed in RBCA, and to provide illustrative examples through case histories with emphasis on Brownfields restorations. The intent is to provide practitioners with an introduction to the concepts that are employed and lessons that have been learned by others. Selected representatives of the Geo-Institute's Environmental Geotechnics and Soil Properties Committees invited the authors to prepare the papers in this GSP. Each paper received at least one positive review before being accepted and was revised to conform to any mandatory revisions required by the reviewers. All papers in this GSP are eligible for discussion in the *Journal of Geotechnical and Geoenvironmental Engineering* and are eligible for ASCE and Geo-Institute awards.


The persons who volunteered to review the papers were essential to the timely publication of this GSP. These persons are:

Shobha K. Bhatia Matthew Clumpner Edward Dauenheimer Robert Dresnack Robert Hazen Todd Heathcoat Peter B. Lederman William Librizzi Randall Longseth Gerard F. Mckenna Mark P. Mitsch Sudhi Mukherjee Alan Murray John Opie George Newell D. Raghu Christine Rioux Arthur Vandeleigh David Velguth C. Vipulanandan Bert Wescott

We are grateful for their efforts, as well as the efforts of the authors.

Craig H. Benson, Jay N. Meegoda, Robert B. Gilbert, and Samuel P. Clemence

June 1998

Contents

An Overview of Brownfields Restorations
The Greening of New Jersey's "Brownfields" as Viewed by the Department of Environmental Protection
Innovation in Brownfields Site Assessment
Tools for Risk-Based Corrective Action (RCBA)
Development of Risk-Based Remediation Strategies
The Evolution of Risk-Based Corrective Action
A Risk-Based Approach for a National Assessment55 Gene Whelan and Gerard F. Laniak
Overview of ASTM Proposed Standard Guide to the Process of Sustainable Brownfields Redevelopment
Risk Evaluation in Brownfield Slurry Wall Containments by Contaminant Transport and CalTOX Models
Case Histories: I
Hitting a Home Run for the Giants Stadium: A Risk Management Approach to Site Investigation and Remediation
Impact of Remedial Landfill Cover Systems and Gas Extraction Systems on Groundwater VOC Concentrations
Lessons Learned: An Assessment of Performance for Completed Remediation Projects141 Lizan N. Koerner, Lisa R. Blotz, and Robert B. Gilbert
Uncertainties Associated with the Preliminary Ecological Risk Assessment Process: Case Study
Past Performance and Emerging Trends
Risk-Sharing Mechanisms for Brownfields Redevelopment

An Analysis of the Success of RBCA in Tennessee UST Site Management196 Kimberly Davis and Chris Bolton
Integration of Risk Management and Project Management for Efficient RCRA Corrective Action
Development of a Site Corrective Action Cost Comparison Model Based on the ASTM RBCA Guide and Decision Theory
Engineering Controls for Risk Reduction at Brownfield Sites
Case Histories: II
Site Remediation and Brownfields Redevelopment of the Former Koppers Seaboard Site, Kearny, New Jersey
Brass Factory to Regional Mall: A Model Brownfield
Case History of a Successful "Brownfields" Site in Wichita, Kansas. Part 1: Innovative Approaches to Funding and Liability
Case History of a Successful "Brownfields" Site in Wichita, Kansas. Part 2: Innovative Approaches to Remediation
Subject Index301
Author Index303

THE GREENING OF NEW JERSEY'S "BROWNFIELDS"- AS VIEWED BY THE DEPARTMENT OF ENVIRONMENTAL PROTECTION

By Richard J. Gimello, Assistant Commissioner, Site Remediation Program and Phyllis E. Bross, Deputy Attorney General

I. OVERVIEW

A. Addressing Impediments To Brownfields Redevelopment

Not unlike other states, New Jersey finds itself heavily involved in brownfield issues. Many commercial and industrial properties are in need, a need that cannot be ignored or avoided. In New Jersey and across the nation, factories, gasoline stations, dry cleaning establishments, chemical storage companies -- even former landfills¹ -- have, in a sense, been used up. Some of them have then been shunned and simply discarded. This State's goal is to encourage redevelopment, especially because some of these sites now being avoided have only been avoided because of perceived contamination (or perceived high cleanup costs). Clearly, our goal to revitalize these properties requires creativity.

For a number of years, New Jersey has possessed a vast body of statutes, regulations, and agency practices which effectively address contamination, whether in the form of pollution prevention or cleanup of already contaminated sites. But, in order to truly promote the reuse of brownfields, encouragement of increased numbers of land investments and redevelopment projects must also be accomplished. That effort, which has required not only legislative enactments such as the 1998 Brownfields Act, but innovative decision-making by various State Departments and other stakeholders as well, is underway.

Some time ago, New Jersey concluded that it should encourage the use of private funds to address contaminated areas of the State. Since that time, this