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Abstract: Performance based seismic design is a modern approach to 

earthquake-resistant design shifting emphasis from �strength� to �performance�. In this 

study, the influence of the shallow foundation (footing) size on the seismic performance 

of the buildings subjected to strong earthquakes is investigated considering 

Soil-Structure Interaction (SSI). A fifteen storey moment resisting frame sitting on 

shallow foundation over soft soil with different foundation size is simulated 

numerically using ABAQUS software. The developed three dimensional numerical 

simulation accounts for nonlinear behaviour of the soil medium by considering the 

variation of soil stiffness and damping as a function of developed shear strain in the soil 

elements during earthquake. Elastic-perfectly plastic model is adopted to simulate 

foundations and structural elements. Four strong earthquake records, including El 

Centro 1940, Hachinohe 1968, Northridge 1994, and Kobe 1995 have been taken as 

input accelerations for time history analysis in time domain. Due to natural period 

lengthening, there was a significant reduction in the base shears when the size of the 

foundation was reduced. It can be concluded that the foundation size can influence the 

dynamic characteristics and seismic response of the building due to SSI and should 

therefore be given careful consideration in order to ensure a safe and cost effective 

seismic design. 

 

INTRODUCTION 

 

   The influence of the underlying soil on the seismic response of a structure can be 

disregarded when the ground is stiff enough, and consequently, the structure can be 

analysed considering the fixed-base conditions. However, the same structure will 

behave differently when it is constructed on a soft soil deposit. Earthquake 

characteristics, the travel path, the local soil properties, and the soil�structure 

interaction are the factors affecting the seismic excitation experienced by structures. 
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The results of the first three factors can be summarised as free-field ground motion. 

However, the foundation of a structure does not follow the deformation of the free-field 

motion due to its stiffness, and the dynamic response of the structure itself induces the 

deformation of the supporting soil (Kramer, 1996). Two key mechanisms are generally 

involved during a seismic soil-foundation-structure interaction: kinematic interaction 

and inertial interaction. Kinematic interaction occurs because stiff foundation elements 

in the soil cause the foundation motion to deviate from the free field ground motion. 

Kinematic interaction could also be due to ground motion incoherence, foundation 

embedment effects, and wave scattering or inclination (Stewart et al., 1999). Inertial 

interaction results from the inertia developed in the structure as its own vibration 

produces base shear, moment, and torsional excitation. These loads cause displacements 

and the foundation to rotate relative to the free field condition (Kramer and Stewart, 

2004). Fundamentally, the size of a foundation can influence the kinematic and inertial 

interactions mainly by altering the mass and stiffness of the soil foundation system 

which in turn influences the seismic response of the superstructure.  

Several researchers (e.g. Sbartai, 2015; Sameti and Ghannad, 2014; Chen, 2015; 

Hokmabadi et al., 2014) studied the seismic soil-foundation-structure interaction (SFSI) 

phenomena and its influence on the seismic response of buildings by adopting the 

Winkler (substructure) methods and the numerical methods. Adopting advanced 

numerical models has a number of advantages over the Winkler methods, especially 

their ability to conduct time history analyses while considering effects such as the 

nonlinear stress�strain behaviour of the soil and the superstructure, material and 

radiation damping, advance boundary conditions, and interface elements. Another 

advantage of using numerical methods is their ability to perform the analysis in a 

fully-coupled manner without resorting to independent calculations of site or 

superstructure response (Meymand, 1998). Consequently, numerical modelling 

predictions can capture the different parameters involved in soil-foundation-structure 

interaction (SFSI) that are closer to reality.  

The aim of this study is to numerically investigate the influence of shallow foundation 

size on the seismic response of a regular mid-rise moment resisting building frame 

during earthquake excitations using ABAQUS software (version 6.12) as a fully 

coupled nonlinear time history analysis.  
 

NUMERICAL MODEL 
 

Case study description  

   In this study, a fifteen storey concrete moment resisting building frame, 45 m high and 

12 m wide with 16 columns consisting of three spans in each direction, and 15 slabs and 

a foundation, is selected (FIG. 1). This building frame represents conventional mid-rise 

moment resisting buildings. The structural sections were specified after conducting a 

routine design procedure regulated in the relevant building codes (AS3600, 2009, 

AS1170.4, 2007). SAP2000 V 14 (CSI, 2010) software was utilised for the structural 

analysis and design of the cross sections of beams and columns. Then, a nonlinear 

time-history dynamic analysis under the influence of the four earthquake ground 

motions shown in FIG. 1 was carried out. In this dynamic analysis the geometric 

nonlinearity and P-Delta effects were considered according to AS3600 (2009). The 

fundamental frequency of the adopted building was 0.830 Hz and its total mass was 

1683 tonnes. 
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columns are presented in Table 1. The structural elements were modelled using an 

elastic-viscoelastic constitutive model while considering the Rayleigh damping 

according to Ryan and Polanco (2008) (Equation (1)). 

 

 [C] = α [M] + β [K]         (1) 

 

where [C], [M], and [K] are the damping, mass, and stiffness matrices, respectively, α 

and β are the model coefficients used to specify the model damping ratio in two modes. 

By assuming the same damping ratio (ξ) for two modes with frequencies fi and fj, the 

model coefficients α and β can be obtained from equations for Rayleigh damping in 

Chopra (2007). In this study, a structural damping ratio (ξ) of 5% together with model 

coefficients of α= 0.3996 and β= 0.0049, calculated based on the first and second mode 

frequencies of the structure (see Table 2), was used to simulate structural damping in the 

dynamic analysis. 
 

Table 1. Adopted characteristics of designed reinforced concrete column sections  
 

Section Type Ix (m
4
) Iy (m

4
) Area (m

2
) E (kPa) ν 

Type I (Levels 1 � 3) 5.33E-3 10.87E-3 0.302 2.86E7 0.2 

Type II (Levels 4 � 7) 3.64E-3 7.45E-3 0.250 2.86E7 0.2 

Type III (Levels 8 � 11) 2.40E-3 4.89E-3 0.203 2.86E7 0.2 

Type IV (Levels 12 � 15) 1.50E-3 3.05E-3 0.160 2.86E7 0.2 
 

Table 2. Natural frequencies of the adopt 15 storey fixed base structure 
 

   

 

 

 The nonlinearity of soil during an earthquake plays an important role in the dynamic 

response of soil-structure systems. In this study, an equivalent linear method has been 

adopted, as described by Seed and Idriss (1969). In this method, a try and error process 

utilising soil nonlinear backbone curves to find the �strain compatible� values of 

damping and modulus is used to capture the soil non-linearity during shaking 

excitations. The adopted equivalent soil stiffness value for each earthquake record was 

different depending on the maximum shear strain generated in the soil deposit, while 

Rayleigh damping was adopted to capture variations of soil damping during each 

earthquake.  Table 3 presents the adopted soil properties. Table 3 presents the adopted 

soil properties. 
 

Table 3. Adopted soil parameters in numerical models 
 

Soil Properties Denote Unit Value 

Mass density ρ kg/m
3
 1470 

Shear Wave Velocity Vs m/s 150 

Poisson�s ratio ν - 0.4 

Plasticity Index PI - 15% 

   For the soil-foundation-structure interaction analysis in this study, surface-based 

contacts were defined such that the master surface is the top surface of the soil and the 

Motion mode Mode 1 (f1) Mode 2 (f2) Mode 3 (f3) Mode 4 (f4) 

Frequency (Hz) 0.830 2.341 4.018 5.781 
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excitations. ABAQUS was used to numerically simulate the soil-foundation-structure 

system by conducting a fully coupled nonlinear time history analysis. 

   According to the results obtained, the size of a shallow foundation can influence the 

structural design of the building under seismic loads considering the seismic 

soil-foundation-structure interaction. Larger shallow foundations can moderate the 

amplifications of lateral deflection and in turn inter-storey drifts of the structure caused 

by SFSI. This can be a cost effective alternative to control the performance level of 

buildings. Moreover, changes in the size of shallow foundations resulted in absorbing 

an amount of energy from the imposed earthquake that corresponded to the natural 

frequency of a particular system. It was observed that buildings with larger shallow 

foundations attracted more inertial forces from earthquake excitations than smaller 

foundations.  
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Abstract:  Seismic methods are useful tools to non-destructively assess the behaviors 

of fresh concrete.  They have also been applied to characterize the properties of 

curing concrete to provide information for construction decision.  This paper shows 

that freezing of concrete significantly affects the engineering properties of concrete.  

In the experimental program, ultrasonic tests were conducted on curing concrete 

subjected to different freezing process.  The results indicate while there exists linear 

correlation between low strain seismic wave velocity and concrete strength under 

normal curing conditions, such relationships do not hold if the concrete is subjected to 

freezing process.  A correction accounting for the effects of ice on the bulk strength 

needs to be applied.  This correction was found to have linear relationship with water 

content.  Procedures to correct the effects of freezing are proposed, which include the 

use of Time Domain Reflectometry to measure the water content.  Finally the strength 

of concrete in frozen status can be estimated. This information could be incorporated 

to determine the magnitude of Winter Load Increase in cold regions for government 

agencies. 

 

INTRODUCTION 

 

The evaluation of mechanical properties of concrete by nondestructive techniques 

is gaining popularity.  Several techniques are currently in use, such as impact echo, 

ultrasonic test, spectra analyses of surface wave.  They are based on the information 

contained in the propagation of ultrasonic waves. Different wave modes and 

transceiving methods are explored.  For example, Boutin
1
 and Arnaud used the speed 

of longitudinal waves (L-waves, also known as compression waves) of low 

frequencies from measuring the time of transition between fluid and solid state of 

cellular cement paste.  A new device for monitoring the hydration of cement mortar 

that measures the transit time and the energy of an L-wave pulse propagating through 

a mortar sample has been introduced by Reinhardt
2
 et al. With this device the setting 

and hardening process of mortar can be evaluated.  Other investigators have applied 

both, longitudinal and transverse waves (T-waves, also known as shear waves) to 

examine the hydration of cementitious materials.  Sayers
3
 and Grenfell found a linear 

relationship between the effective bulk and shear moduli determined by pulse 
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