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Preface 
This Geotechnical Special Publication (GSP) contains 20 papers presented at the 4th 

GeoChina International Conference held in Shandong, China from July 25 to 27, 

2016. The conference is endorsed by a number of leading international professional 

organizations. The technical programs for the 4th GeoChina International Conference 

came into contact with a balance between the fundamental theories and field 

applications. The papers in this GSP address a mixture of current issues in the 

Advances in Unsaturated Soil, Seepage, and Environmental Geotechnics, Natural 

Hazard and Disaster Monitoring, and Geosynthetic Reinforced Soil Retaining 

Structure. Furthermore, this GSP includes investigations and solutions from 

numerous countries, and it expands ranges of tools that are available to engineers and 

scientists. 

 

 

Acknowledgments 
The following individuals have assisted on preparing the GSP and reviewing the 

papers: Howard Hwang, Hui-Mi Hsu, An Cheng, Wei-Ting Lin, Jiong Zhang, and 

Yingjie Zheng. 

 

Geo-China 2016 GSP 261 iii

© ASCE

https://www.civilenghub.com/ASCE/118552417/Geo-China-2016-Geosynthetic-Civil-Infrastructure-Disaster-Monitoring-and-Environmental-Geotechnics?src=spdf


Contents 

Consolidation-Induced Contaminant Transport in Multi-Layer Soils .................. 1 

Hefu Pu and Patrick J. Fox 

Design of Shallow Square Foundations Using Saturated and  

Unsaturated Soil Parameters ..................................................................................... 9 

Feyzullah Gulsen and Aykut Senol 

Hydro-Mechanical Properties of Some Potential Clay Liner Materials in 

Southwestern Nigeria ............................................................................................... 18 

Oluwapelumi O. Ojuri and Micheal A. Uduebor 

Hydraulic Conductivity of Partially Saturated Semi-Arid Tropical Black  

Clay from Consolidation Tests ................................................................................ 26 

Joseph B. Adeyeri, Oluwapelumi O. Ojuri, and Micheal A. Uduebor 

Design of Sand-Based Landfill Liners as Waste Containment Barriers in  

Coastal Areas ............................................................................................................ 34 

Oluwapelumi O. Ojuri and Jude E. Ojemen 

Efficacy of Lime Treatment on the Mercury Retention Characteristics of  

Semi Arid Soils .......................................................................................................... 41 

Arif Ali Baig Moghal, Krishna R. Reddy, Abu Syed Mohammed,  

Mosleh Ali Al Shamrani, and Waleed M. Zahid 

Role of Different Leaching Methods to Arrest the Transport of Ni
2+

 in  

Soil and Soil Amended with Nano Calcium Silicate .............................................. 49 

S. A. S. Mohammed, P. F. Sanaulla, A. M. Alnuaim, and Arif Ali Baig Moghal 

Monitoring Landslide Phenomena along Li-Shing Estate Road in Nantou 

County of Central Taiwan by Applying an Object-Oriented Segmentation 

Approach ................................................................................................................... 57 

Chenyuan Chiu, Chih-Ping Peng, Yishuo Huang, and Chi-Ping Wang 

Using PIV to Analyze Landslide Movement on a Large Landslide ..................... 65 

Tai Seong Quah, Sung-Chi Hsu, Ya Suan Huang, Y. J. Ye, Chih-Hung Chiang,  

and Tao-Min Cheng 

Evaluation of the Impact of Land Use Change and Climate Change on 

Watershed Ecosystem Services in the Chenyulan Watershed .............................. 73 

Li-Chi Chiang and Yi-Ting Chuang 

Geo-China 2016 GSP 261 iv

© ASCE

https://www.civilenghub.com/ASCE/118552417/Geo-China-2016-Geosynthetic-Civil-Infrastructure-Disaster-Monitoring-and-Environmental-Geotechnics?src=spdf


Sensitivity and Uncertainty Analyses of the Translational Slide at the  

Cidu Section, 3.1k of the Taiwan Formosan Freeway ........................................... 81 

Shong-Loong Chen, Chia-Pang Cheng, and Meen-Wah Gui 

Seismic Response of a Geosynthetic-Reinforced Slope in Northeastern  

Taiwan ....................................................................................................................... 90 

Hui-Mi Hsu, Lih-Chuan Hwang, An Cheng, Tsan-Hsuan Yu, and Jason Chao 

Examination of the Design Procedures and Case Studies for Polyester Strip 

Reinforced MSE Retaining Structures in Non-Standard Soil .............................. 98 

Giulia Lugli, Funding Xu, and Moreno Scotto 

The Performance of Strip Footing Resting on Geogrid-Reinforced Dune  

Sand .......................................................................................................................... 106 

Yahia E.-A. Mohamedzein and Mohammed Y. Al-Aghbari 

Application and Advantages of Lime Stabilized Backfill MSE Retaining 

Structures ................................................................................................................ 114 

Giulia Lugli, Giuseppe Lembo, and Fuding Xu 

Evaluating the Performance of Geotextile Wrapped/Layered Soil:  

A Comparative Study Using the DEM .................................................................. 122 

Hongyang Cheng and Haruyuki Yamamoto 

EPS Resistance Factors and Applications on Flexible Walls .............................. 131 

Sherif S. AbdelSalam and Salem A. Azzam 

Laboratory Testing of Enhancing the Bearing Capacity of  

Strip Footing with Woven Geotextiles .................................................................. 139 

Shengmin Wu, Jiunnren Lai, Chiung-Fen Cheng, Guo-Hao Lai, and  

Chun-Jung Wei 

Study on Calculation Methods for Reinforced Earth ......................................... 146 

Baotong Shi and Xiangxing Kong 

Study on the Vegetation Restoration Method to Reinforce Slope ...................... 152 

Baotong Shi and Xiangxing Kong 

Geo-China 2016 GSP 261 v

© ASCE

https://www.civilenghub.com/ASCE/118552417/Geo-China-2016-Geosynthetic-Civil-Infrastructure-Disaster-Monitoring-and-Environmental-Geotechnics?src=spdf


 

 

 

 

 

 

 

 

Consolidation-Induced Contaminant Transport in Multi-Layer Soils 
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Abstract: This paper presents a numerical investigation of the effects of large strain 

consolidation on contaminant transport in multi-layer soils.  Numerical simulations 

were conducted using the CST3 model, which accounts for one-dimensional coupled 

large strain consolidation and contaminant transport in saturated multi-layer porous 

media.  The consolidation algorithm accounts for vertical strain, soil self-weight, 

general constitutive relationships, relative velocity of fluid and solid phases, changing 

compressibility and hydraulic conductivity during consolidation, unload/reload, time-

dependent loading, time-dependent boundary conditions, external hydraulic gradient, 

variable preconsolidation stress profiles, and multiple soil layers with different 

material properties.  The contaminant transport algorithm accounts for advection, 

diffusion, mechanical dispersion, linear and nonlinear sorption, equilibrium and 

nonequilibrium sorption, porosity-dependent effective diffusion coefficient, and first-

order decay reactions.  Simulation results indicate that layered soil heterogeneity can 

have significant effects on both consolidation behavior and contaminant transport 

behavior.  Characterization of a multi-layer soil stratum as a homogeneous single 

layer with average properties may result in significant errors in the analysis of 

consolidation-induced contaminant transport in multi-layer soils. 

 

INTRODUCTION 

 

The phenomenon of consolidation-induced contaminant transport is observed in a 

variety of geoenvironmental engineering applications, including contaminant 

transport through landfill bottom liner systems during waste placement operations, 

confined disposal of dredged contaminated sediments, and subaqueous capping of 

contaminated sediments (Fox and Shackelford 2010).  For these applications, 

contaminant transport processes involve advection, dispersion, and sorption, which is 
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similar to the transport in rigid porous media as described by classical transport 

theory.  In addition, consolidation-induced contaminant transport processes also 

involve transient advective flows and changes in transport properties such as porosity 

and effective diffusion coefficient, which further complicate the modeling of such 

transport processes.  

Over the last two decades, several research groups have utilized different methods 

to consider consolidation-induced contaminant transport in porous media, such as the 

work by Potter et al. (1994), Smith (2000), Peters and Smith (2002), Fox (2007a, 

2007b), Fox and Lee (2008), Pu and Fox (2015a), Fox and Pu (2015), and Pu et al. 

(2015).  All of these studies assume that the porous medium is homogeneous and thus 

layered soil heterogeneity, which is more common in reality, is neglected.  Although 

many solutions are available for the contaminant transport in rigid multi-layer porous 

media (e.g., Leij and van Genuchten 1995; Li and Cleall 2011), very limited progress 

has been made in the area of coupled consolidation and contaminant transport in 

multi-layer soils.  Recently, Pu and Fox (2015b) developed a piecewise-linear 

numerical model, called CST3, to model such problem. 

This paper provides an overview of the capabilities of the CST3 model.  Then, 

numerical simulations were performed using CST3 to illustrate the effects of layered 

soil heterogeneity on the consolidation results and associated contaminant transport 

results.  The errors for modeling multi-layer soils as a homogeneous single layer were 

discussed for the analysis of consolidation-induced contaminant transport in multi-

layer soils. 

 

MODEL DESCRIPTION  

 

CST3 was developed on the basis of the CS2, CS3 and CST2 models and follows 

similar procedures with regard to geometry, effective stress, fluid flow, settlement, 

and contaminant transport.  The CST3 model and its predecessors have undergone 

extensive validation, including comparisons with experimental data (e.g., Fox and 

Berles 1997; Fox 2007b; Fox and Lee 2008; Lee and Fox 2009; Pu and Fox 2015b).  

Only a brief summary is provided below.  

A saturated compressible soil stratum has initial height ToH , contains iR  

horizontal layers, and is treated as an idealized two-phase material in which the solid 

particles and pore fluid are incompressible.  The initial geometry, prior to application 

of surcharge load at time t  = 0, is shown in Fig. 1.  The stratum is sufficiently wide 

such that all quantities vary only in the vertical direction and consolidation can be 

treated as one-dimensional.  Vertical coordinate z  and layer coordinate i  are defined 

as positive upward from a fixed datum at the bottom of the stratum.  Each layer i  has 

initial height 
,o iH  and the solid phase of layer i  is represented as a column of 

,j iR  

vertical solid elements, and thus the total number of solid elements for the stratum is 

( ),1

iR

Ts j ii
R R

=
= .  Layer elevation coordinate iz  and layer solid element coordinate j  

are defined as positive upward from the base of each layer.  Each solid element j  of 

layer i  has unit cross-sectional area (plan view), initial height 
,so iL , a central node at 

initial elevation 
, ,so i jz , and initial void ratio 

, ,o i je .  Nodes translate vertically and 
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remain at the center of their respective elements throughout the consolidation process.  

The distribution of void ratio is assumed to be uniform within each solid element and 

varies vertically among solid elements depending on the initial vertical effective 

stress at the top of the stratum oq , the compressibility and self-weight of the soil, and 

any vertical seepage forces due to an external hydraulic gradient acting across the 

stratum (Fox 2007a).   

The pore fluid of each layer i  is also represented as a column of elements, with 

,mo iR  fluid elements initially in the column, and thus the initial total number of fluid 

elements for the stratum is ( ),1

iR

Tf mo ii
R R

=
= .  Fluid elements are defined by vertical 

element coordinate m  upward from the base of each layer.  Each m
th

 fluid element of 

layer i  has initial height 
,fo iL , unit cross-sectional area (plan view), and a central 

node located at initial elevation 
, ,fo i mz .  Each m

th
 fluid element of layer i  has initial 

solute (i.e., dissolved) concentration 
, ,o i mc  [mass solute/volume fluid] and initial 

solute mass 
, , , , , ,fo i m o i m fo i mC c V= , where 

, ,fo i mV =
, , , , ,/ (1 )fo i o i j o i jL e e+  is the initial volume 

of fluid in the element and 
, ,o i je  is the initial void ratio of the solid element at the 

same elevation.  The initial sorbed concentration for each solid element 
, ,o i js  [mass 

contaminant/mass solid] is assumed to be in equilibrium with the local solute 

concentration. 

Constitutive relationships are defined using conventional log-linear parameters for 

each layer.  Each solid element is characterized as normally consolidated (NC) or 

overconsolidated (OC).  If OC, the compressibility relationship is defined by � �( , )i ie σ ′ , 

recompression index 
,r iC , preconsolidation stress 

, ,p i jσ ′ , and compression index 
,c iC , 

where � �( , )i ie σ ′  is a known point on the compressibility curve.  Vertical hydraulic 

conductivity k for each solid element is defined by a log-linear relationship 
,i jk =  

, , , , , ,exp[( ) ln10]o i j i j o i j k ik e e C′− , where 
, ,o i jk  is the vertical hydraulic conductivity at 

, ,o i je , and 
,k iC′  is the reciprocal of hydraulic conductivity change index = logk e∆ ∆ .  

Aside from unload/reload effects, a one-to-one correspondence is assumed for each 

constitutive relationship.  Thus, CST3 does not account for the effects of strain rate, 

secondary compression, or aging on the compressibility or hydraulic conductivity of 

the soil.  Furthermore, the solute is assumed to be sufficiently dilute so as to not alter 

the constitutive relationships of the soil. 

Top and bottom boundaries of the stratum can be specified as drained or 

undrained and, if drained, are assigned individual total hydraulic head values, th  and 

bh , taken with respect to the datum (Fig. 1).  Transport conditions for the top and 

bottom boundaries can be specified as prescribed concentration (Type I), prescribed 

concentration gradient (Type II), or prescribed solute mass flux (Type III).  CST3 can 

also consider a reservoir boundary condition, which represents the time-varying 

concentration of an accumulating well-mixed aqueous reservoir formed above the soil 

stratum from fluid outflow at the top boundary (Fox and Lee 2008). 
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Fig. 1.  Initial geometry for CST3 (Pu and Fox 2015b). 

 

Surcharge load is applied to the soil stratum beginning at t  = 0.  The vertical 

effective stress at the top boundary at time t is equal to t

oq q+ ∆ , where effective 

stress increment 
tq∆  is constant with depth but can change with time.  In response to 

surcharge loading, excess pore pressures generated within the layer cause fluid flow 

to all drainage boundaries.  Soil deformation is one-dimensional and occurs in 

response to the net fluid outflow from each element.  In a deforming soil stratum, 

contaminant transport occurs by transient advection and dispersion in the fluid phase 

and sorption onto moving solid elements.  The sorption can be considered as linear or 

nonlinear (Freundlich isotherm), equilibrium or nonequilibrium (i.e., kinetic).  An 

effective diffusion coefficient that changes with soil porosity during consolidation can 
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