PROCEEDINGS OF THE

Fourteenth Coastal Engineering Conference

June 24-28, 1974 • Copenhagen, Denmark

Volume I

Sponsored by
Coastal Engineering Research Council
and
Waterways, Harbors, and Coastal Engineering Division
ASCE

Ministry of Public Works of Denmark
Danish Hydraulic Institute
Institute of Hydrodynamics and Hydraulic Engineering
Technical University of Denmark
Danish Society of Civil Engineers

Published by the American Society of Civil Engineers 345 East 47th Street, New York, N.Y 10017 Price \$16.00

This is a preview. Click here to purchase the full publication.

COPYRIGHT 1975

By The American Society

of

Civil Engineers

This is a preview. Click here to purchase the full publication.

ACKNOWLEDGMENTS

The following engineers from Denmark served as the Organizing Committee for the Fourteenth International Conference on Coastal Engineering

Torben Sørensen (Chairman) Danish Hydraulic Institute Danish Academy of Technical Sciences Copenhagen

Jørgen F. Petersen Consulting Engineer Copenhagen

Per Roed Jakobsen Danish Hydraulic Institute Danish Academy of Technical Sciences Copenhagen

Jens Kırkegaard Danish Hydraulic Institute Danish Academy of Technical Sciences Copenhagen H. Lundgren
Institute of Hydrodynamics and
Hydraulic Engineering
Technical University of Denmark
Lyngby

H B Sørensen Department of Coastal Engineering Ministry of Public Works Lemvig

Folmer Hofdahl
Department of Coastal Engineering
Ministry of Public Works
Lemvig

FOREWORD

These International Conferences on Coastal Engineering have grown over the years since 1950 in attendance, in the number of papers presented, and in scope of engineering and scientific content. There has been an even greater increase in the work of arranging for a conference—a task which, if well done, gives the erroneous impression of requiring little effort. The physical arrangements and the social events of this conference have been superbly done and the Coastal Engineering Research Council and the other sponsoring organizations are most grateful to Chairman Sørensen, Professor Lundgren and the Copenhagen Organizing Committee.

As these conferences have grown in international standing, the number of interesting papers by qualified authors submitted for consideration has increased so greatly as to preclude scheduling all of them in a full week of parallel sessions. The onerous task of selection from among papers of high quality was carried out by the Papers Committee and the Council as equitably as they knew how to do—but, under the circumstances, there may have been some inequities in the choices made—and to those authors so affected the Council is sincerely apologetic.

A topic of considerable professional importance to engineers engaged in coastal work is the scarcity of statistical data on wave action-and the incompleteness of much of the data available. This situation becomes both surprising and disturbing, in view of the fact that the effect of ocean waves is a unique characteristic of coastal engineering and that the solution of almost every coastal problem involves consideration of the incident wave climate. There are many natural phenomena for which long-time records and extensive geographical coverage are readily available-rainfall, stream flow, solar radiation, wind velocity, cloud cover and many more, but-the climatology of ocean waves, a phenomenon of overriding importance to coastal engineers and scientists, is fragmentary and much of it is of questionable validity. Space does not permit a full discussion of this serious deficiency in the basis for sound planning and design. Providing these data will require national or international programs of observation and analysis Where such programs are inadequate, or lacking entirely, coastal engineers should exert their influence to bring them about under the auspices of a permanent public agency and to put the data in form for engineering and scientific application

> Morrough P O'Brien, Chairman Coastal Engineering Research Council American Society of Civil Engineers

ACKNOWLEDGMENTS	111
FOREWORD	1V
THEME SPEAKERS	
STUDIES IN COASTAL GEOMORPHOLOGY CONTRIBUTING TO COASTAL ENGINEERING André Guilcher	1
HISTORY OF SOME ASPECTS OF MODERN COASTAL ENGINEERING J. W. Johnson	21
COASTAL ENGINEERING AND OFFSHORE LOADING FACILITIES Eco W. Bijker	45
PART I	
THEORETICAL AND OBSERVED WAVE CHARACTERISTICS	
Chapter 1 EXTREME LEVELS ARISING FROM METEOROLOGICAL SURGES P. Ackers and T D. Ruxton	69
Chapter 2 CALIBRATION OF A HURRICANE STORM SURGE PROGRAM Ronald M. Noble and James A. Hendrickson	87
Chapter 3 STORM SURGE EFFECTS AT LEIXÕES C. Campos Morais and F. Abecasis	98
Chapter 4 PORTUGUESE WAVE REGIMEN Júlio Patriarca Barceló	112

Chapter 5	
WAVE STATISTICS ALONG THE NORTHERN COAST OF EGYPT M. Manhohar, I. E. Mobarek, A. Morcos and H. Rahal	132
Chapter 6 WIND AND WAVE RELATIONSHIPS IN A SHALLOW WATER AREA J. S. Driver and J. D. Pitt	148
Chapter 7 WAVE GROUP FORMATION AMONG STORM WAVES H. Rye	164
Chapter 8 LARGE-HEIGHT RESPONSE OF TWO WAVE RECORDERS L. Draper, J. D. Humphery and E. G. Pitt	184
Chapter 9 TRANSMISSION LINE WAVE HEIGHT TRANSDUCER C. M. G. Zwarts	193
Chapter 10 LOW-COST INSHORE WAVE DIRECTION INDICATOR G. de F. Retief and A. P. M. Vonk	212
Chapter 11 CURRENT MEASUREMENTS USING A TILTING SPAR R. L. Lowe, D. L. Inman and C. D. Winant	225
Chapter 12 BASIC SYSTEMS OF WIND WAVE FIELD Yu. M. Krylov, S. S. Strekalov and V. Ph. Tsyploukhin	240
Chapter 13 LOSSES OF INNER ENERGY IN SEA WAVES V. K. Shtencel	250
Chapter 14 ENHANCEMENT OF DIRECTIONAL WAVE SPECTRUM ESTIMATES Narayana N. Panicker and Leon E. Borgman	258
Chapter 15 OPTIMAL DESIGN FOR WAVE SPECTRUM ESTIMATES M. A. Tayfun, C. Y. Yang and G. C. Hsiao	280

Chapter 16 SPECTRA AND BISPECTRA OF OCEAN WAVES Ole Gunnar Houmb
Chapter 17 LABORATORY GENERATION OF WAVES OF CONSTANT FORM J. Buhr Hansen and Ib A. Svendsen
Chapter 18 PROGRAMMABLE IRREGULAR WAVE GENERATOR Normal B. Webber and Colin D. Christian
Chapter 19 RANDOM WAVE SIGNAL GENERATION BY MINICOMPUTER Ed R Funke
Chapter 20 MODEL TESTS WITH DIRECTLY REPRODUCED NATURE WAVE TRAINS Helge Gravesen, Ebbe Frederiksen and Jens Kirkegaard
Chapter 21 MEASUREMENTS OF INCIDENT WAVE HEIGHT IN COMPOSITE WAVE TRAINS Ake Sandstrom
Chapter 22 ORIGIN, EFFECT AND SUPPRESSION OF SECONDARY WAVES C. H. Hulsbergen
Chapter 23 TRANSFORMATION OF IRREGULAR WAVES IN SHOALING WATER Tetsuo Sakai and Yuichi Iwagaki
Chapter 24 CRITICAL TRAVEL DISTANCE OF WAVES IN SHALLOW WATER Winfried Siefert
Chapter 25 MASS TRANSPORT IN GRAVITY WAVES ON A SLOPING BOTTOM E. W. Bijker, J. P. Th. Kalwijk and T. Pieters

Chapter 26 SURF SIMILARITY J. A. Battjes	466
Chapter 27 WAVE DEFORMATION AFTER BREAKING Toru Sawaragi and Koichiro Iwata	481
Chapter 28 WATER WAVE INTERACTION IN THE SURF ZONE D. Howell Peregrine	500
Chapter 29 FIELD INVESTIGATIONS IN SURF ZONES Hans Henning Dette and Alfred Fuhrböter	518
Chapter 30 FIELD MEASUREMENETS OF NEARSHORE VELOCITIES David A. Huntley and Anthony J. Bowen	538
Chapter 31 VELOCITIES UNDER PERIODIC AND RANDOM WAVES Allen Lee, Clive A. Greated and Tariq S. Durrani	558
Chapter 32 INTERNAL VELOCITIES IN THE UPRUSH AND BACKWASH ZONE Patrick H. Kemp and David T. Plinston	575
Chapter 33 RESULTS OF OCEAN WAVE—CONTINENTAL SHELF INTERACTION Victor Goldsmith and Joseph M. Colonell	586
Chapter 34 DIFFRACTION OF GRAVITY WAVES BY LARGE ISLANDS Peter L. Christiansen	601
Chapter 35 EFFECT OF WAVE REFRACTION OVER DREDGED HOLES J. M. Motyka and D. H. Willis	615
Chapter 36 WATER WAVES ON A BILINEAR SHEAR CURRENT Robert A. Dalrymple	626

Chapter 37	
COMPUTER AID FOR OPTIMUM DESIGN OF TSUNAMI WAVES Toshio Iwasaki	642
PART II	
COASTAL SEDIMENT PROBLEMS	
Chapter 38	
FEASIBILITY OF COASTAL MORPHOLOGICAL MODELS Evald Nielsen	663
Chapter 39	
LONGSHORE CURRENTS AND WAVES AT BURULLUS COAST M. Manohar, I. E. Mobarek and A. Morcos	685
Chapter 40	
COMPUTATION OF LONGSHORE CURRENTS Ivar G. Jonsson, Ove Skovgaard and Torben S. Jacobsen	699
Chapter 41	
COMPUTER EVALUATION OF LITTORAL TRANSPORT Theodor R. Mogel and Robert L. Street	715
Chapter 42	
COMPARISON BETWEEN THE RESULTS OF LITTORAL-DRIFT COMPUTATIONS AND CUBATURE OF DEPOSITS ON A DREDGED CHANNEL	
V. F. Motta and J. V. Bandeira	726
Chapter 43	
MEASURING SAND DISCHARGE NEAR THE SEA-BOTTOM Dieter Wenzel	741
Chapter 44	
SEDIMENT THRESHOLD UNDER OSCILLATORY WAVES	
Paul D. Komar and Martin C. Miller	756
Chapter 45	
STABILITY OF A SAND BED UNDER BREAKING WAVES	776
Ole Secher Madsen	776

Chapter 46 SEDIMENT TRANSPORT IN RANDOM WAVES AT CONSTANT WATER DEPTH	
Hsiang Wang and S S. Liang	795
Chapter 47 MODE AND PERIOD OF SAND TRANSPORT IN THE SURF ZONE Benno M. Brenninkmeyer	812
Chapter 48 SAND TRANSPORT AND COASTAL STABILITY, LANCASHIRE, U.K. William Reginald Parker	828
Chapter 49 DIFFERENTIAL MOVEMENT OF COARSE SEDIMENT PARTICLES Alan Paul Carr	851
Chapter 50 DYNAMICS AND MORPHOLOGY OF SAND BANKS IN THE SURF ZON OF OUTER TIDAL FLATS Harald Gohren	
Chapter 5I SCHEMATIZATION OF ONSHORE-OFFSHORE TRANSPORT D. H. Swart	884
Chapter 52 THEORY ON FORMATION OF RIP-CURRENT AND CUSPIDAL COAST Mikio Hino	901
Chapter 53 TWO DIMENSIONAL BEACH TRANSFORMATION DUE TO WAVES Tsuguo Sunamura and Kıyoshı Horıkawa	920
Chapter 54 EQUILIBRIUM PROFILES OF COARSE MATERIAL UNDER WAVE ATTACK E. van Hijum	939
Chapter 55 LAB PROFILE AND REFLECTION CHANGES FOR H _O /L _O = 0 02 Charles B. Chesnutt and Cyril J. Galvin, Jr	