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Abstract: Infrastructure built for protecting communities from the impacts of extreme
events have largely been designed based on concepts such as return period and risk
assuming stationarity. In view of increased attention to the effects of anthropogenic and
climate variability and change, traditional methods of hydrologic designs are being
extended to deal with nonstationarity of future extremes. The nonstationary design
methods discussed in this paper are based on the concepts of (a) ExpectedWaiting Time
(EWT); (b) Risk; and (b) Expected Number of Events (ENE). These methods are applied
and compared using two examples of increasing floods and extreme sea levels. In
addition, the effect of uncertainty introduced by the projection of nonstationarity into
the future along with potential options for dealing with it are discussed. The importance
of developing adaptive pathways based on flexible designs is also emphasized.

Keywords: Nonstationarity; hydrologic design; return period, risk, and frequency of
extremes; flexible designs.

1 INTRODUCTION

Hydrologic design of infrastructure for protection from the impacts of extreme
events have been traditionally based on a wide range of statistical techniques which
assume that the hydrologic regime is stationarity. In simple terms, stationarity
implies that past observations provide an indication as to what is to be expected in
the future. A stochastic process representing time series of extremes is stationary
when its probability distribution function (PDF) is invariant with respect to time t.
A more formal definition of a strictly stationary time series, Zt, t = : : :−1, 0, 1, : : :
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is one where the joint statistical distribution of {Zt1, Zt2, : : : , Ztn} is the same as the
joint distribution of {Zt1+m, Zt2+m, : : : , Ztn+m} for all values ofm and n (Kendall et al.
1983). For extreme events of hydrologic variables such as precipitation amounts,
flood magnitudes, and sea levels, commonly PDFs such as Log-Normal (LN), Log-
Pearson Type III (LP3), and Generalized Extreme Value (GEV) have been employed,
although applications of other alternatives can be found in the literature. The past
observations at a site or its vicinity are typically used for fitting a selected extreme
value distribution for designing a project for an assumed life span of n years (e.g.,
50 years) which may initiate its operation following construction at some time t0
(Figure 1). Traditionally, the concept of “return period”, T, has been used as a criterion
for sizing a hydraulic structure (e.g., spillway or a sea wall). In a stationary framework,
a selected PDF with constant parameters are estimated from historical data, and the
design quantile (also known as return level) for a desired return period is determined.
A fundamental assumption is that the same PDF will remain unchanged in the future.

Some hydrologists argue that hydrologic processes have never been stationary
or never will be. Hydrologic observations typically consist of both deterministic
and stochastic components, and therefore the justification for the above argument
may be made easily because both components are likely to change with time due to
anthropogenic influence in the environment or climate variability and change.
Detection of spatio-temporal change is difficult due to many reasons including:
(a) often hydrologic records are too short to determine the absence or presence of
statistically significant trends and (b) in some cases, the low-frequency compo-
nents of the climatic process may be misinterpreted as spurious, persistent trends.
Likewise, observations exhibiting trends, may be the result of land use changes in
the river basin of interest, which in turn may require methods beyond those based
on the stationarity assumption. In some cases, the effects of land use changes, such

Figure 1. Examples of stationary and nonstationary annual maximum floods for:

(a) Umpqua river basin in Elkton, Oregon and (b) Assunpink Creek, Trenton,

New Jersey. The dashed line in each figure is the fitted location parameter using a

stationary and nonstationary GEV respectively for each case. The variables t0 and

tn denote the beginning and end of the project design life, n, respectively. In

addition, zq0 is the design quantile, and p’s denote exceedance probabilities.

64 ENGINEERING METHODS FOR PRECIPITATION UNDER A CHANGING CLIMATE

https://www.civilenghub.com/ASCE/122182242/Engineering-Methods-for-Precipitation-under-a-Changing-Climate?src=spdf


as urbanization, on the hydrologic regime has been considered by using adjust-
ments so that the observed record becomes stationary (e.g., Moglen, 2003; Gilroy
and Mc Cuen, 2012). In addition to known changes in the landscape of river
basins, the growing evidence of human influence on the climate system and their
potential effect on the hydrologic cycle justifies seeking newer, nonstationary
approaches for hydrologic designs.

In view of the effects of anthropogenic and climatic variability and change on
the hydrologic cycle, Milly et al. (2008) published a thought-provoking paper
entitled, “Stationarity Is Dead: Whither Water Management?” and suggested the
need for finding a suitable successor to the stationary approach. This paper drew
major attention worldwide with pros and cons and critical commentaries from
many, as exemplified by papers with such titles as, “Stationarity: Wanted Dead or
Alive? (Lins and Cohn 2011), “Comment on the Announced Death of Statio-
narity” (Matalas 2012), “Negligent Killing of Scientific Concepts: the Stationary
Case” (Koutsoyiannis and Montanari 2014), “Modeling and Mitigating Natural
Hazards: Stationarity is Immortal!” (Montanari and Koutsoyiannis 2014), and
“Stationarity is Undead: Uncertainty Dominates the Distribution of Extremes”
(Serinaldi and Kilsby 2015). It is beyond the scope of this paper to discuss the
critical commentaries of the paper by Milly et al. (2008). Clearly, many hydro-
logists believe that the declared death of stationarity was premature. In response to
some of the above criticisms, Milly et al. (2015) agreed with many arguments
advanced in support of keeping the stationarity concept alive, but reiterated the
need to consider nonstationarity in the representation of hydrologic processes in
the 21st century. They also suggested that the simplicity of the message helped
convey the need to consider nonstationarity in the future and doubted that readers
of Milly et al. (2008) misunderstood the essence of what was implied by the phrase,
“Stationarity is Dead.”

While the scientific debate continues regarding the future role of statio-
narity, the practicing engineering community has been searching for need novel
methods for hydrologic design for extreme events where some form of non-
stationarity is observed or projected for the future, whether it is induced by land-
use change and/or climate variability and change. Of course, one needs to be
aware of the difficulties and many uncertainties involved in predicting both
deterministic and stochastic changes in the hydrologic process of interest. In this
paper, we review recent advances in extending the stationary concepts and
methods for evaluating the performance of hydraulic projects considering a
nonstationary paradigm. First, we briefly summarize the current concepts
associated with the stationarity approach. Next, we provide a summary of
extensions to the concepts of Expected Waiting Time (EWT) which is same
as the Return Period, Expected Number of Events (ENE), and Risk (R),
suggesting how they could be used for hydrologic design under nonstationarity.
We illustrate the foregoing concepts using two examples, one for increasing
floods and another for increasing sea level extremes. The paper concludes with a
discussion of uncertainties and some remarks.

HYDROLOGIC DESIGNS FOR EXTREME EVENTS UNDER NONSTATIONARITY 65

https://www.civilenghub.com/ASCE/122182242/Engineering-Methods-for-Precipitation-under-a-Changing-Climate?src=spdf


2 BRIEF REVIEW OF STATIONARY METHODS

The stationary approach assumes that extreme values (e.g., floods, sea levels) are
independent and identically distributed (i.i.d) random variables with a specified
probability distribution. Henceforth, we will consider the case of annual maxima
(each value represents the maximum value over a block-length of one year).
Denoting the random variable of extremes as Z, assume that is has a Cumulative
Distribution Function (CDF) denoted by FZðz, θÞ where θ is its parameter set.
Consequently, for a given cumulative probability, q, the corresponding value of the
variable, Z, denoted as zq is called the q-th quantile. In addition, sometimes the
notation zp is utilized, where p denotes the exceedance probability, i.e. p = 1 − q.
Likewise, traditionally, the concept of Return Period, T, has been used in which
T = 1/p (e.g., Gumbel 1941) and in this case the quantiles zq or zp as defined above
are also written as zT. Furthermore, in some recent literature, the referred
quantiles have been called “return level” (e.g., Coles 2001). In the remainder of
the paper however, we will use the names quantiles, design quantiles, or design
levels.

Figure 1(a) shows schematically the hydrologic design problem using the
annual maximum flood data for the Umpqua river near Elkton, Oregon which is
assumed to be stationary over the historical period. The design life of n years is
assumed to start from time t0 when the project operation begins following
construction. When using the Return Period T as the design criteria, it is useful
to remember that T is the expected waiting time (EWT) and it can be extended
easily to the nonstationary condition. The waiting time, X, is the time it takes from
time t0 for the first flood event exceeding the design quantile, say, zq0, which
implies that all other prior annual maxima after t0 are less than zq0. It can be
shown that, X, is a random variable that follows the geometric distribution (e.g.,
Mood et al, 1974) in which its expected value is E[X] = 1/p0 where p0 is the
exceedance probability of the design level zq0 and it can be determined from
p0 = 1 − FZðzq0, θÞ. It follows that the design return period, T which is equal to
1/p0 is the Expected Waiting Time (EWT) for the extreme event to occur. It is
noted that the Return Period is not related to the design life, n. The return period
concept may be interpreted as, “the expected waiting time for the T-year event is T
years.” In addition, the variance of X is Var(X) = ð1 − p0Þ∕p

2
0.

Another measure that is important in evaluating and designing projects is the
hydrologic risk which incorporate the design life, n. It may be shown that the
number of events exceeding zq0 in a n-year period is a random variable, Y, which
has a Binomial Distribution (BD) (e.g., Bras, 1990)

P½Y = y�=

�

n
y

�

ðp0Þ
yð1 − p0Þ

n−y y= 0, 1, : : : n (1)

where y is the number of such events over the design life, n. Risk, R, may be
defined as the occurrence of one or more extremes exceeding the design return
level or equivalently P[Y ≥ 1]. Consequently, R is given by
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R=P½Y ≥ 1�= 1 − P½Y = 0�= 1 − ð1 − p0Þ
n (2)

Other quantities of interest for project evaluation and design include: (a) the
expected number of events exceeding the design event over the n-year period,
i.e. E[Y] = np0 and (b) the risk of say, y or more floods in the n-year period,
i.e. P[Y≥ y]. The latter can be computed using the BD given in Eq. (1). Note that
Eq. (2) suggests that risk, R, is only a function of T = 1/p0 and n and computing it
does not require the knowledge of the underlying extreme value distribution.
Using some typical values of n = 30 and 50 years, the variation of risk, R as a
function of the design return period, T, is shown in Figure 2.

An often ignored fact is that, for a typical design return period of say,
T = 100 years, the risk of one or more events during the design life can be
substantially high. For instance, in case of n = 30 (years) design life, the risk of a
project designed for T = 100 years is as high as 26% which is the probability of
one or more events exceeding the design quantile over the n-year period. When
n = 50 years, the risk increases to about 40%. Note that the risks of 2 or more or
3 or more events over the design life decreases rapidly from these magnitudes. For
example, when y≥ 2 and y≥ 3, the 26% risk reduces to about 3.6% and 0.3%,
respectively for n = 30 years. In situations where projects can sustain repetitive
extreme events that may exceed the design event, knowledge of the foregoing risk
for higher values of y may be relevant.

3 NONSTATIONARY METHODS

We will now extend the project evaluation and design methods outlined in the
previous section into conditions of nonstationarity. Figure 1(b) illustrates a
situation of nonstationarity where the annual flood maxima of the Assunpink

Figure 2. Variation of Risk, R, as a function of design return period, T, for design life,

n equal to (a) 30 years, and (b) 50 years. In both cases the number of exceeding

events considered are y = 1, 2, and 3 over n years.
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Creek near Trenton, New Jersey show an increasing pattern. This data set have
been used extensively by Obeysekera and Salas (2014, 2016) to illustrate the
quantification of uncertainty and the recurrent flooding concepts under non-
stationarity. At this location, the annual maximum floods have been increasing
over years due to increasing urbanization as indicated by a doubling of population
from 1930s to 1990s (Dow and DeWalle 2000). Unlike the stationary case where
the probability p0 is expected to remain constant in the future, the probability
exceeding the design quantile zq0 will increase over time from p0 to pn at the end
of the design life, n (Fig. 1b). Consequently, since the exceedance probability,
pt increases for t = 1, 2, . . . , n the traditional geometric distribution with constant
p is not applicable. The time-varying p can be obtained readily from a fitted time
varying model as pt = 1 − FZðzq0, θtÞ where the subscript t in θ indicates that the
underlying PDF of annual maxima changes with time, and hence nonstationary
(note that we assume that the type of PDF is the same, but the parameters vary
with covariates that evolve with time). In this case, the waiting time, X, for the first
occurrence of an event exceeding zq0 follows a nonhomogeneous geometric
distribution (Mandelbaum et al. 2007; Salas and Obeysekera 2014). As in the
stationary case, we will use the Expected Waiting Time (EWT) concept but now
with time varying probabilities, pt.

The derivation of EWT under nonstationarity may be found in Cooley (2013)
and Salas and Obeysekera (2014). This leads to a convenient formula for EWT,
which we denote as T given by

T = 1þ
X

∞

x= 1

Y

x

t = 1

ð1 − ptÞ (3)

In practice, the increasing values of pt will converge the product to zero quickly
and a finite, but somewhat large value of x, say xmaxmay be adequate instead of the
infinite summation shown in Eq. (3). Since, pt = f(zq0, θt) and the initial design
return period is T0 = 1/p0, a curve of T versus T0 can be constructed for a given
sequence of pt values. We call this a “Return Period Curve” and it is a convenient
design tool for nonstationary situations. It can be used to answer questions such as
“What should be the design T0 if the desired EWT, T, is say, 50 years?” Clearly, for
increasing extreme events, T < T0. We will illustrate this case with an example in
the next section.

The risks under nonstationarity can be derived using an approach similar to
the stationary case but it is somewhat more complex. Assuming, once again, Y is
the number events exceeding the design quantile zq0 over the design life n with
possible values y = 0, 1, 2 : : : n, the probability mass function (equivalent to the
Binomial Distribution in the stationary case) is given by the Poisson Binomial
Distribution (Obeysekera and Salas, 2016),

P½Y = y�=
X

A∈F y

Y

j∈A

pj
Y

i∈Ac

ð1 − piÞ, y= 0, 1, : : : , n (4)
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whereF y is the set of all subsets of y integers that can be selected from {1, 2, 3, : : : , n},
and Ac is the complement of A with respect to {1, 2, : : : , n}. While Eq. (4) can be
used to determine the risk R = P(Y> 0), as mentioned in Obeysekera and Salas
(2016), the computation of the PMF given by Eq. (4) is cumbersome, particularly
for large n. Instead one may use the simple nonstationary risk formula (Salas and
Obeysekera 2014),

R= P½Y ≥ 1�= 1 − P½Y = 0�= 1 −
Y

n

t = 1

ð1 − ptÞ (5)

Since the time varying probabilities, pt can be determined for a given initial design
quantile, zq0, the computation of the risk, R, using Eq. (5) is straight forward. As in
the stationary case, the Risk of multiple events during the design life n can be
computed using the expression P[Y ≥ y], where y = 2, 3, : : : but that will require
the use of Eq. (4).

Another quantity of interest under nonstationarity is the time-varying
frequency of extreme events. In case of increasing probabilities of exceedance,
the frequency of extreme events exceeding the initial design level zq0 will increase
with time. The expected number of events, ENE, over the design life n is a measure
that may be used for evaluating existing projects or as a design criteria for future
projects (Obeysekera and Salas 2016). Although the computation of PMF given by
Eq. (4) is cumbersome, the expected value and the variance of Y are simpler and
can be determined from

E½Y�=
X

n

t = 1

pt (6)

Var½Y �=
X

n

t = 1

ptð1 − ptÞ (7)

It is straightforward to show that, under stationarity conditions, i.e. pt = p0 for all
t, then E½Y �= np0 and Var½Y �= np0ð1 − p0Þ which correspond to the first two
moments of the Binomial Distribution as stated above in the previous section.

4 ILLUSTRATIVE EXAMPLES

4.1 Increasing Annual Floods

For illustrating the evaluation and design concepts presented above considering
nonstationarity, the annual peak flows of the Assunpink Creek watershed in
Trenton, New Jersey for the period 1924–2013 are analyzed. As indicated above,
this watershed is located in a highly urbanized area and the observations of
maximum annual floods exhibit an increasing trend as shown in Figure 1(b).
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Although the methods described in Section 3 is general in that any extreme value
distribution (e.g LP3) could be fitted to the data, we illustrate the application by
fitting a nonstationary Generalized Extreme Value (GEV) to the annual maxima
data. Obeysekera and Salas (2014) fitted a variety of stationary and nonstationary
GEV models and demonstrated the statistical significance of an apparent trend
as shown in Figure 1(b). The chosen model was a GEV distribution with the
location parameter varying with time and constant scale and shape parameters.
The corresponding exceedance probability for the nonstationary GEV model is
given by,

pt = 1 − exp
n

−
h

1þ
ε

σ
ðzq0 − μtÞ

i

−1
ε

o

(8)

where μt is the location parameter in year t, and σ and ε are the scale and
shape parameters respectively, and they are assumed to be time-invariant. The
R-package extRemes (Gilleland et al. 2016) was used to estimate the parameters
of the nonstationary GEV model by applying the method of maximum likeli-

hood, which give: μt = a0 þ a1ðt − 1968.027Þ with a0 = 44.587 m3

sec
, a1 =

0.306m
3

sec

year
,

σ= 16.617 m3

sec
, and ε= 0.136. The time variable, t, has been centered around its

own mean (1924 to 2013) for computational efficiency reasons. Using the above
parameters, the time varying probabilities, pt, may be computed from Eq.(8) for
future years given the design quantile, zq0.

In order to illustrate the application of the nonstationary EWT criterion
(Expected Waiting Time for the first occurrence), let us assume that a design
is required for a project with an initial year of operation in the year 2020
(i.e. t0 = 2020), and a design life, n = 50 years. First, various values of design
quantiles zq0 corresponding to a range of values of T0, say 5 to 100 years in
increments of 5 years, are computed using the GEV quantile equation,

zq0 = μ0 −
σ

ε

�

1 −

�

− ln

�

1 −
1

T0

��

−ε
�

(9)

where μ0 is the location parameter corresponding to the initial year 2020, and the
parameters σ and ε have been estimated from data as discussed above. For each
value of zq0, the time varying probabilities, pt, may be computed from Eq. (8).
Then, using the values of pt, the nonstationary EWT, T, is determined from
Eq. (3). For this example, a sufficiently large value xmax = 1000 was used for the
infinite summation shown on the right side of Eq. (3). Then a Return Period Curve
is developed using the above steps as shown in Figure 3(a). And a Risk Curve for
n= 50 under nonstationarity is determined using Eq. (5) as shown in Figure 3(b).
The corresponding curve for the stationarity condition is also shown in Fig. 3(b)
for comparison.

The Return Period Curve shown in Figure 3(a) is the primary design metric
utilized based on EWT. It provides information of the size of the project to be
built in Year 2020 in terms of the Design Return Period, T0 for a desired level of
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protection under nonstationarity specified by the metric, T (EWT). For instance, if
the value T = 50 years is considered, then the project should be designed for T0 of
about 80 years as shown in Figure 3(a). The increase in the return period is
attributed to the nonstationary behavior of annual floods which is expected to
continue beyond 2020.

The risk of one or more floods exceeding the design flood quantile zq0 is
shown in Figure 3(b). It is a useful measure for assessing the performance of a
given project. For instance, when T0 = 80 years (corresponding to T = 50 years),
for a design life, n = 50 years, the Risk, R, assuming stationarity is about 47%,
while under nonstationarity, the risk increases to about 56% (i.e. about 9%
increase of risk due to nonstationarity). Note the large values of the risk of
“failure” obtained under the given assumptions of project design. The results
imply that the design of the project zq0 may be too small and suggests that smaller
risks can be obtained by increasing the design quantiles zq0 i.e. increasing the
return periods T0.

Next, we illustrate the two other design criteria that were introduced in the
previous sections, namely: (a) Risk based design and (b) Expected Number of
Events (ENE) design. In the case of risk based design, tolerable risk (of one or
more events exceeding the design level) over the design life n is used to determine
the initial design in terms of its return period (T0) or quantile (zq0). This method is
similar to the Design Life Level (DLL) concept suggested by Rootzen and Katz
(2013). To implement this approach, Eq. (5) is applied to determine an appro-
priate value of zq0 (note that the values of pt, t= 1, 2, : : : n are related to zq0 from
Eq. (8)) for the specified value of risk, R. Since there is no explicit solution to find
zq0 for the specified value of R a numerical solution of Eq. (5) can be followed.
Alternatively, an indirect practical procedure which is easy to implement can be
used. This is accomplished by creating a curve of R versus zq0 first and then finding
the value of the design quantile, zq0 for a specified value of R via interpolation. For
illustration, such a curve derived by using Eqs. (5) and (8) for a design life,
n = 50 years starting in year 2020 is shown in Figure 4(a). As an example,

Figure 3. (a) Return Period Curve and (b) Risk Curve for nonstationary floods. In (b),

the stationary risk curve is also shown (dashed line) for comparison.
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assuming the allowable level of Risk, is say 10%, the design level can be obtained
from this figure by interpolation, which gives 228 m3/sec (shown as the point on
the curve).

Using Figure 4(a), the return level, zq0 was computed for a range of Risk
values as shown in Figure 5 (continuous solid blue line). Once zq0 is determined,
the corresponding return period, T0 is computed using the fitted GEV model as
shown in Figure 5 (continuous solid red line). For comparison, equivalent curves
assuming stationarity are also shown (dashed lines). The above are design curves

Figure 4. (a) Risk versus Design Quantile curve for determining zq0 for a desired

level of risk R and (b) ENE versus Design Quantile curve for determining zq0 for a

specified value of ENE.

Figure 5. Risk-based design curves for a design life, n = 50 years starting in year

2020. The blue lines (solid and dashed) show the design level (zq0) for a specified

Risk, R (nonstationary and stationary) and the red curves show the same but for

design return period, T0.
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