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CHAPTER C1

INTRODUCTION

C1.3 SEISMIC DESIGN CRITERIA

The objective of this standard is to provide design criteria, which
when properly implemented in design and construction, produce
seismically robust structures, systems, and components (SSCs).
Seismically robust structures, systems, and components safe-
guard against the accidental release of nuclear material to the
workers, the public, and the environment. The criteria focus on
cast-in-place reinforced concrete and structural steel systems.
The construction details required for these structural systems,
according to referenced materials standards such as ACI 349
(ACI 2013b) and AISC N690 (AISC 2018), should ensure
seismic ruggedness with a high degree of reliability. This design
standard should be read in conjunction with ASCE 1 (ASCE
1982), ASCE 4 (ASCE 2016b), and other codes and standards
referenced herein.

Requirements for structural systems with a demonstrated poor
seismic performance record, such as unreinforced masonry or
precast concrete using conventional gravity connections, have
been purposely omitted from this standard and should not be used
in the primary seismic load path.

The criteria presented in this standard do not discourage the
use of any structural system with reliable seismic performance.
Guidance is provided (in Section 1.5 and in the commentary) to
develop criteria for seismically rugged structural systems not
discussed herein that ensure the same degree of safety as those
structural systems explicitly addressed.

This standard prescribes design criteria that are graded accord-
ing to tolerable risk. Those SSCs whose failure results in more
serious undesirable consequences to the facility workers, the
public, or the environment are designed for more stringent
criteria, as measured by seismic design category (SDC) and
limit state (LS), as defined in ANS 2.26 (ANS 2017) and as
described in this commentary. Four of the five SDCs identified in
ANS 2.26 are considered in this standard: SDC 2, SDC 3, SDC 4,
and SDC 5, as listed in Table 1-1. All four of the limit states
identified in ANS 2.26 are considered in this standard, LS A, LS
B, LS C, and LS D, as listed in Table 1-2.

The seismic performance of an individual SSC is defined by
two measures that together form a seismic design basis (SDB): a
qualitative description of the acceptable level of damage, and a
quantitative annual frequency that damage will exceed the
acceptable level.

The qualitative description of acceptable damage is referred to
as an LS. The four LSs are reproduced from ANS 2.26 in Table
1-2 and range from A (significant damage) to D (negligible
damage). Design loads in Chapters 5 and 8 and deformation
limits in Chapter 5 are used to limit SSC damage to the degree
associated with the assigned LS. Components, equipment, and
distribution systems assigned lower tolerable damage are
designed for higher seismic loads. Structural systems with lower

tolerable damage should satisfy more stringent (smaller) criteria
for drift ratios (Table 5-2) and plastic hinge rotations (Table 5-3)
than those assigned higher tolerable damage.

For each SSC, the maximum annual frequency of seismic
damage exceeding the limit state is the target performance goal
(PF). Table 1-1 presents performance goals for SDC 2 (4 × 10–4)
through SDC 5 (1 × 10–5). Design basis earthquake (DBE)
shaking is defined for each SDC. Chapter 2 presents criteria to
define DBE shaking. The frequency of exceeding an LS is a
function of fragility, seismic hazard, and the rate of change of the
hazard. Limit state exceedance frequency is calculated by
integrating a fragility curve over the derivative of a seismic
hazard curve, where the two curves share the same abscissa
(e.g., spectral acceleration at 5 Hz). Rigorous modern probabi-
listic seismic hazard results, including the maps prepared by the
US Geological Survey (USGS), indicate that the rate of change of
ground motion intensity versus exceedance frequency is not
constant throughout the United States. As a consequence, design
to a prescribed ground motion hazard would result in varying
LS exceedance probabilities at different locations for SSCs with
an identical fragility. Figure C1-1 plots the 2014 USGS 5 Hz
spectral acceleration versus the annual frequency of exceedance
for sites with a near-surface shear wave velocity of 760 m/s
(2,490 ft/s). The curves have been normalized at 2% probability
of exceedance in 50 years. Figure C1-1 shows that the slope of
the hazard curve, and therefore the frequency of exceedance of an
LS, varies across the country. For instance, in coastal California
(e.g., at SLAC National Accelerator Laboratory in Menlo Park),
the ratio of the spectral acceleration associated with a 10-fold
increase in hazard ranges from about 1.5 to 3.5, whereas in the
Central and Eastern United States (e.g., Oak Ridge, Tennessee)
those ratios range from 2.5 to 5.

Seismic performance can be improved by decreasing the
level of allowable damage (LS), by decreasing the annual
frequency of exceeding that damage (PF), or by some combi-
nation of the two. For instance, a structure to be designed to
have an annual probability of 4 × 10–5 (SDC 4) of suffering
damage that exceeds limited permanent distortion (LS C) would
be assigned SDB 4C. The expected performance could be
improved by changing the LS to D (the structure remains
essentially elastic) or by changing the exceedance probability
to 1 × 10–5 (SDC 5). In this standard, the most stringent seismic
requirements are associated with SDB-5D, and the least strin-
gent are associated with SDB-2A.

The performance goals of Table 1-1 represent the annual
frequency of unacceptable performance (as defined by its LS)
for each safety-related SSC. As such, these SSC-specific perfor-
mance goals cannot be compared with performance goals (e.g.,
collapse prevention or life safety) for commercial (nonnuclear)
buildings. Importantly, the performance goal of 4 × 10–4 for an

Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities 39

https://www.civilenghub.com/ASCE/122887642/ASCE-43?src=spdf


SDC 2 SSC in this standard cannot be compared to the building-
level collapse prevention goal of ASCE 7.
Chapter 2 of this standard provides a method to define DBE

response spectra. Load effects on SSCs are calculated by analysis
of a building model according to ASCE 4 for the seismic
demands of Chapter 2, as modified by inelastic energy absorption
factors, according to Chapters 5 and 8. Detailing according to the
requirements of the referenced materials standards, as modified
by Chapter 6, should enable an SSC to achieve its seismic design
basis.

C1.4 INTEGRATION OF OTHER CODES AND
STANDARDS WITH ASCE 43

Specific ANS standards that address seismic design of SSCs in
nuclear safety-related facilities are the following:

• ANSI/ANS 2.26-R2017 (ANS 2017), Categorization of
Nuclear Facility Structures, Systems, and Components for
Seismic Design provides guidelines and criteria for selecting
SDCs and limit states, which are inputs to this standard.
ANSI/ANS 2.26 identifies five SDCs (SDC 1 to SDC 5)
based on the importance of the consequences of failure and
defines four limit states (A to D) based on damage and
ability to perform safety function(s). ANSI/ANS 2.26 uses a
graded approach to ensure that the level of conservatism and
rigor in design is appropriate for facility characteristics, such
as hazards to workers, the public, and the environment. The
combination of SDC and limit state defines the seismic design
basis (SDB) for each SSC. Thus, an SSCwith SDB-3Cwould

use criteria for SDC 3 and Limit State C. A total of 20 SDBs
are defined in ANS 2.26 that can match seismic design
criteria to SSC safety function and importance, implementing
a graded approach.

The seismic design criteria and methods specified in this
standard (ASCE 43), however, are intended to achieve the
same performance goals given in ANS 2.26-R2017 for SDC
3 through SDC 5. Both ANS 2.26 and the previous version
of this standard defer seismic design of SDC 1 and SDC 2
SSCs to the International Building Code, which in turn
points to ASCE 7 (ASCE 2016a). This standard now
includes design provisions for SDC 2 SSCs using a newly
introduced performance goal and the associated seismic
design criteria. This standard (ASCE 43) does not discuss
or provide seismic design criteria for SDC 1 SSCs.

• ANSI/ANS 2.27-R2016 (ANS 2016a), Criteria for Inves-
tigations of Nuclear Facility Sites for Seismic Hazard
Assessments provides requirements and recommended prac-
tices for conducting site-specific investigations and acquir-
ing data sets needed to characterize seismic sources for
probabilistic seismic hazard analysis. The data sets provide
information for site response and soil–structure interaction
analyses needed for design of nuclear facilities. It requires
site investigations “in sufficient scope and detail necessary
to support the evaluations required by ANSI/ANS-2.29 and
ASCE 43-05 and to support the objectives of ANSI/ANS-
2.26.” Accordingly, it provides guidance for selecting dif-
ferent levels of site investigation based on the highest SDC
of SSCs at the site and using a graded approach.

Figure C1-1. Normalized 5 Hz spectral acceleration at selected US DOE sites.
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• ANSI/ANS 2.29-R2016, Probabilistic Seismic Hazard
Analysis (ANS 2016b) establishes requirements for per-
forming these calculations. Like ANSI/ANS 2.27, it requires
the use of a graded approach and provides guidance for the
selection of a degree of complexity for the hazard analysis.
Additional requirements and guidance have been provided
in this standard (ASCE 43) for performing site-specific
probabilistic seismic hazard analysis, site response analysis,
and for establishing uniform hazard response spectra
(UHRS).

Standards used in the seismic design of nuclear safety-related
structures include the following:

• ASCE 1, Guidelines for Design and Analysis of Nuclear
Safety-Related Earth Structures (ASCE 1982) provides
criteria and guidelines to be used in construction of earth
structures forming part of the ultimate heat sink or acting
to protect nuclear power plant sites from flood, storm surge,
or other types of natural or artificial external load
phenomena.

• ASCE 4, Seismic Analysis of Safety-Related Nuclear Struc-
tures (ASCE 2016b) provides minimum requirements and
acceptable methods for the seismic analysis of a nuclear
facility. ASCE 4 also provides a methodology for calculat-
ing seismic response in structures and to derive input
motions for use in the seismic design qualification of
electrical and mechanical systems and components located
in or supported by buildings or other civil structures.

• ASCE 7, Minimum Design Loads and Associated Criteria
for Buildings and Other Structures (ASCE 2016a) provides
minimum design load requirements and procedures to de-
termine the effects of loads for the design of buildings and
other civil structures, as well as mechanical and electrical
distribution systems and components.

Other codes and standards used in the seismic design of nuclear
safety-related structures include the following:

• ACI 349, Code Requirements for Nuclear Safety-Related
Concrete Structures and Commentary (ACI 2013b)
addresses the design and construction of concrete structures
that form part of a nuclear safety-related facility. These
facilities include concrete structures inside and outside a
nuclear reactor containment system, but not concrete reactor
vessels or their concrete containment structures (which are
defined in a Joint ACI-ASME Committee 359 Code, ACI
2015). ACI 349 is based on ACI 318 (ACI 2014) except that
(a) it includes loads and load combinations applicable to
nuclear structures, and (b) some of the prescriptive details of
ACI 318 for special systems are relaxed in recognition of the
smaller nonlinear demands placed on nuclear structures.

• ASME, Boiler and Pressure Vessel Code, Section III,
“Rules for Construction of Nuclear Facility Components”
(ASME 2019a).

• ANSI/AISCN690 2018, Specification for Safety-Related Steel
Structures in Nuclear Facilities (AISC 2018) applies to the
construction of safety-related nuclear steel structures. This
specification includes design loads, load combinations, and
requirements for treatment of impact and impulse loads; it is
otherwise compatible with ANSI/AISC 360 2016, Specifica-
tion for Structural Steel Buildings (AISC 2016c). Only those
sections that differ from the ANSI/AISC 360 specification
provisions are included in the N690 specification.

Codes and standards used in the design and seismic qualification
of mechanical and electrical equipment and distribution systems

and components are identified in Chapter 8 of this standard and
its associated commentary.

C1.5 ALTERNATIVE METHODS TO MEET THE
INTENT OF THIS STANDARD

The DBE ground motion is defined in Equation (2-1) in terms of
a design response spectrum (DRS). Structures whose elements
are designed for DRS demands using design capacities derived in
accordance with referenced materials standards, as modified in
this standard, are expected to achieve the target performance goal
listed in Table 1-1. The DRS is formulated to achieve both of the
following:

1. Less than about a 1% probability of unacceptable perfor-
mance for the DBE ground motion, and

2. Less than about a 10% probability of unacceptable perfor-
mance for a ground motion equal to 150% of the DBE
ground motion.

Alternative methods that achieve the target performance goal are
acceptable.

Seismic fragility functions (i.e., conditional probabilities of
unacceptable performance versus seismic demand) are typically
assumed to be lognormally distributed so that they can be fully
described by two terms: a median and an estimate of the
composite variability, β [Equation (C1-11)], a logarithmic stan-
dard deviation. The median in this case is a seismic margin
factor, FPF= 50%, where FPF is the ratio of the acceleration
corresponding to a conditional failure probability PF to the DBE
acceleration. Satisfying the two target levels of conservatism
defined here results in the following seismic margin factors F1%,
F5%, F10%, and F50%, corresponding to a 1%, 5%, 10%, and
50% conditional probability of unacceptable performance
(i.e., failure), respectively:

For a logarithmic standard deviation less than 0.39, the second
conditional failure probability controls. For β greater than 0.39,
the first goal controls. By satisfying both goals, the following
margins are achieved:

F1% ≥ 1.0

F5% ≥ 1.3

F10% ≥ 1.5

F50% ≥ 2.2

Factors of Safety Achieved by Seismic Acceptance Criteria

Introduction. In this standard, component design strengths are
assumed, namely, component nominal strengths according to
ACI and AISC multiplied by action-specific strength reduction
factors (ϕ), and strength according to ASME Service Level D.
Seismic demand is calculated according to ASCE 4, using
the seismic hazard of Chapter 2 of this standard. Limit state–

β F1% F5% F10% F50%

0.30 1.10 1.35 1.50 2.20

0.40 1.00 1.31 1.52 2.54

0.50 1.00 1.41 1.69 3.20

0.60 1.00 1.50 1.87 4.04
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dependent inelastic energy absorption factors can be
implemented according to Chapters 5 and 8 to reduce seismic
demands for actions associated with ductile response.

Estimation of Median Conservatism Introduced by Standard
Seismic Acceptance Criteria. The median seismic capacity,
C50%, can be estimated from

C50% =
S50%

D50%

Fμ50%DBE (C1-1)

where

S50% = Median estimate of the component’s seismic strength,
D50% = Seismic demand for DBE input, and
Fμ50% = Inelastic energy absorption factor.

The standard seismic capacity, CSTD, is given by

CSTD =
SSTD

DSTD

FμSTD DBE (C1-2)

where

SSTD = Deterministic strength,
DSTD = Demand, and
FμSTD = Nonlinear factors,

as defined in accordance with this standard. Defining RS, RD, and
RN as the median conservatism ratios associated with this
standard,

S50% =RSSSTD

D50% =DSTD∕RD

Fμ50% =RNFμSTD (C1-3)

and

C50% =RCCSTD (C1-4)

RC =RSRDRN (C1-5)

where RC is the overall median conservatism ratio associated
with the acceptance criteria of this standard. The values of RS, RD,
and RN are estimated in the following three subsections.

Median Strength Conservatism Ratio. Based on a review of
median capacities from past seismic probabilistic risk assessment
studies with respect to US code-specified ultimate strengths for a
number of failure modes, code design strengths have at least a
98% probability of exceedance for ductile failure modes if
conservatisms for material strengths, empirical equations, and
strain-rate effects are considered. For low-ductility failure modes
such as out-of-plane shear in concrete walls and slabs, an
additional 1.33 factor is applied to the 98th percentile capacity.
This factor accounts for the additional margin provided by
standards for the design strength of low-ductility failure modes.
Accordingly,

ðDuctileÞ RS = e2.054βS (C1-6)

ðLow ductilityÞ RS = 1.33e2.054βS

where βS is the strength logarithmic standard deviation, typically
in the range of 0.2 to 0.4, and 2.054 is the standard normal variate
for a 2% nonexceedance probability (NEP).

Median Demand Conservatism Ratio. The goal of ASCE 4 is to
calculate seismic demands with an 80% probability of nonex-
ceedance conditioned on a design response spectrum. Analysis of
multiple soil columns and enveloping the resultant spectra
according to Chapter 5 of ASCE 4 is assumed to achieve the
80th percentile. The median demand ratio, RD, can therefore be
estimated as

RD = e0.842βD (C1-7)

where βD is the seismic demand logarithmic standard deviation
for a specified seismic input, typically between 0.2 and 0.4 and
0.842 is the standard normal variate for a 20% NEP.

Median Nonlinear Conservatism Ratio. In this standard,
the nonlinear factor is aimed at the 5% NEP level. For ductile
failure modes such as flexure, the median nonlinear factor ratio,
RN, is

ðDuctileÞ RN = e1.645βN (C1-8)

where βN is the logarithmic standard deviation for the nonlinear
factor, typically between 0.2 and 0.4, and 1.645 is the standard
normal variate for a 5% NEP.
For low-ductility (brittle) failure modes, no credit is taken for a

nonlinear factor, namely,

ðLow ductilityÞ RN = 1.0 (C1-9)

Capacity Conservatism. Combining Equations (C1-5) through
(C1-8), the median capacity ratio, RC, is

ðDuctile failuresÞ RC = e2.054βSþ0.842βDþ1.645βN (C1-10)

ðLow ductilityÞ RC = 1.33e2.054βSþ0.842βD

and

C1% =RCCSTDe
−2.326β (C1-11)

where β is a composite variability given by

β= ½β2S þ β2D þ β2N �
1∕2 (C1-12)

The resulting nominal factor of safety, FN1%, against a 1%
conditional probability of failure is

FN1% =
C1%

CSTD

=RCe
−2.326β (C1-13)

and the nominal factor of safety, FN10%, against a 10% condi-
tional probability of failure is

FN10% =
C10%

CSTD

=RCe
−1.282β (C1-14)

Table C1-1 presents FN1% for typical values of βS, βD, and βN.
Over this range of values,

FN1% ≈ 1.0 (C1-15)
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with FN1% ranging between 0.94 and 1.29, with a median value
of 1.14. Table C1-2 presents FN10% for typical values of βS, βD,
and βN. Similarly,

FN10% > 1.5 (C1-16)

Accordingly, both performance statements 1 and 2 given in
Section C1.5 are met.

Table C1-2. Nominal Factor of Safety, FN10%.

Strength

Variability

(βS)

Demand

Variability

(βD)

Low-

Ductility

Failure

Modes

Ductile Failure Modes

βN = 0.2 βN = 0.4

0.2 0.2 1.66 1.59 1.84

0.3 1.63 1.59 1.88

0.4 1.57 1.57 1.89

0.3 0.2 1.80 1.80 2.12

0.3 1.82 1.82 2.18

0.4 1.81 1.81 2.20

0.4 0.2 2.00 2.00 2.41

0.3 2.04 2.04 2.49

0.4 2.05 2.05 2.53

Table C1-1. Nominal Factor of Safety, FN1%.

Strength

Variability

(βS)

Demand

Variability

(βD)

Low-

Ductility

Failure

Modes

Ductile Failure Modes

βN = 0.2 βN = 0.4

0.2 0.2 1.23 1.11 1.10

0.3 1.12 1.03 1.07

0.4 1.00 0.94 1.01

0.3 0.2 1.26 1.17 1.21

0.3 1.18 1.11 1.19

0.4 1.08 1.03 1.13

0.4 0.2 1.27 1.20 1.29

0.3 1.22 1.16 1.27

0.4 1.14 1.10 1.23
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