Groundwater Contamination by Organic Pollutants Analysis and Remediation

AMERICAN SOCIETY OF CIVIL ENGINEERS

Groundwater Contamination by Organic Pollutants

Analysis and Remediation

Edited by Jagath J. Kaluarachchi

Sponsored by Groundwater Quality Committee Environmental and Water Resources Institute (EWRI)

Published by

ASCE American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191-4400

Abstract: Groundwater contamination by organic pollutants has become an important topic since the early 1980s due to detection of large-scale contamination events. Since that time, substantial research efforts have been focused on developing new and innovative technologies and management approaches to clean up organic-contaminated sites. With the development of new and effective technologies, current research efforts are now more focused on risk assessment and management at contaminated sites, and remediation in complex geological environments. Although research, technology transfer, and public education have been active links of the overall effort, still there is limited technology transfer and understanding of common remediation technologies and corresponding analysis among practitioners and managers. The goal of this monograph is to provide some insight into the remediation technologies associated with the saturated subsurface and corresponding analysis. It is intended to improve the understanding of both existing practitioners and beginning engineers, geologists, water chemists, and biologists.

Library of Congress Cataloging-in-Publication Data

Groundwater contamination by organic pollutants : analysis and remediation / edited by Jagath J. Kaluarachchi.

p. cm.—(ASCE manuals and reports on engineering practice ; no. 100) Includes bibliographical references and index. ISBN 0-7844-0527-1

1. Organic water pollutants—Analysis. 2. Groundwater—Pollution. 3. Groundwater— Purification. I. Kaluarachchi, Jagath J. II. Series.

TD427.O7 G76 2000 628.1′68—dc21

00-063966

The material presented in this publication has been prepared in accordance with generally recognized engineering principles and practices, and is for general information only. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application.

The contents of this publication are not intended to be and should not be construed to be a standard of the American Society of Civil Engineers (ASCE) and are not intended for use as a reference in purchase of specifications, contracts, regulations, statutes, or any other legal document.

No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE.

ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore.

Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

Photocopies: Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$8.00 per chapter plus \$.50 per page is paid directly to CCC, 222 Rosewood Drive, Danvers, MA 01923. The identification for ASCE Books is 0-7844-0527-1/01/\$8.00 + \$.50 per page. Requests for special permission or bulk copying should be addressed to Permissions & Copyright Department, ASCE.

Copyright © 2001 by the American Society of Civil Engineers. All Rights Reserved. Library of Congress Catalog Card No: 00-063966 ISBN 0-7844-0527-1 Manufactured in the United States of America

MANUALS AND REPORTS ON ENGINEERING PRACTICE

(As developed by the ASCE Technical Procedures Committee, July 1930, and revised March 1935, February 1962, and April 1982)

A manual or report in this series consists of an orderly presentation of facts on a particular subject, supplemented by an analysis of limitations and applications of these facts. It contains information useful to the average engineer in his everyday work, rather than the findings that may be useful only occasionally or rarely. It is not in any sense a "standard," however; nor is it so elementary or so conclusive as to provide a "rule of thumb" for nonengineers.

Furthermore, material in this series, in distinction from a paper (which expresses only one person's observations or opinions), is the work of a committee or group selected to assemble and express information on a specific topic. As often as practicable the committee is under the direction of one or more of the Technical Divisions and Councils, and the product evolved has been subjected to review by the Executive Committee of the Division or Council. As a step in the process of this review, proposed manuscripts are often brought before the members of the Technical Divisions and Councils for comment, which may serve as the basis for improvement. When published, each work shows the names of the committees by which it was compiled and indicates clearly the several processes through which it has passed in review, in order that its merit may be definitely understood.

In February 1962 (and revised in April 1982) the Board of Direction voted to establish:

A series entitled "Manuals and Reports on Engineering Practice," to include the Manuals published and authorized to date, future Manuals of Professional Practice, and Reports on Engineering Practice. All such Manual or Report material of the Society would have been refereed in a manner approved by the Board Committee on Publications and would be bound, with applicable discussion, in books similar to past Manuals. Numbering would be consecutive and would be a continuation of present Manual numbers. In some cases of reports of joint committees, bypassing of Journal publications may be authorized.

MANUALS AND REPORTS OF ENGINEERING PRACTICE

No.	Title	No.	Title
13	Filtering Materials for Sewage	72	Design of Steel Transmission Pole
	Treatment Plants		Structures
14	Accommodation of Utility Plant	73	Quality in the Constructed Project: A
	Within the Rights-of-Way of Urban		Guide for Owners, Designers, and
	Streets and Highways		Constructors
35	A List of Translations of Foreign	74	Guidelines for Electrical Transmission
	Literature on Hydraulics		Line Structural Loading
40	Ground Water Management	76	Design of Municipal Wastewater
41	Plastic Design in Steel: A Guide and		Treatment Plants
	Commentary	77	Design and Construction of Urban
45	Consulting Engineering: A Guide for		Stormwater Management Systems
	the Engagement of Engineering	78	Structural Fire Protection
	Services	79	Steel Penstocks
46	Pipeline Route Selection for Rural and	80	Ship Channel Design
	Cross-Country Pipelines	81	Guidelines for Cloud Seeding to
47	Selected Abstracts on Structural		Augment Precipitation
	Applications of Plastics	82	Odor Control in Wastewater
49	Urban Planning Guide		Treatment Plants
50	Planning and Design Guidelines for	83	Environmental Site Investigation
	Small Craft Harbors	84	Mechanical Connections in Wood
51	Survey of Current Structural Research		Structures
52	Guide for the Design of Steel	85	Quality of Ground Water
	Transmission Towers	86	Operation and Maintenance of
53	Criteria for Maintenance of Multilane		Ground Water Facilities
	Highways	87	Urban Runoff Quality Manual
55	Guide to Employment Conditions for	88	Management of Water Treatment
	Civil Engineers		Plant Residuals
57	Management, Operation and	89	Pipeline Crossings
	Maintenance of Irrigation and	90	Guide to Structural Optimization
	Drainage Systems	91	Design of Guyed Electrical
59	Computer Pricing Practices		Transmission Structures
60	Gravity Sanitary Sewer Design and	92	Manhole Inspection and
	Construction		Rehabilitation
62	Existing Sewer Evaluation and	93	Crane Safety on Construction Sites
	Rehabilitation	94	Inland Navigation: Locks, Dams, and
63	Structural Plastics Design Manual		Channels
64	Manual on Engineering Surveying	95	Urban Subsurface Drainage
65	Construction Cost Control	96	Guide to Improved Earthquake
66	Structural Plastics Selection Manual		Performance of Electric Power
67	Wind Tunnel Studies of Buildings		Systems
	and Structures	97	Hydraulic Modeling: Concepts and
68	Aeration: A Wastewater Treatment		Practice
	Process	98	Conveyance of Residuals from Water
69	Sulfide in Wastewater Collection and		and Wastewater Treatment
	Treatment Systems	99	Environmental Site Characterization
70	Evapotranspiration and Irrigation		and Remediation Design Guidance
	Water Requirements	100) Groundwater Contamination by
71	Agricultural Salinity Assessment and		Organic Pollutants: Analysis and
	Management		Remediation

TABLE OF CONTENTS

CC	ONTRIBUTING AUTHORS viii
FC	REWORD ix
1	MODELS FOR DESCRIBING MULTIPHASE FLOW AND TRANSPORT
	OF CONTAMINANTS 1
	Zafar Adeel, James W. Mercer, and Charles R. Faust
	1.1 Overview
	1.2 Physico-Chemical Factors Affecting NAPL Mobility
	1.3 Modeling of Multiphase Movement
	1.4 Available Computational Models14
	1.5 Multiphase Models for Remediation Technologies
	1.6 General Limitations of Multiphase Models
	1.7 Case Histories
	1.8 References
2	A SCREENING APPROACH TO SIMULATION OF AQUIFER CONTAMINATION BY FUEL HYDROCARBONS (BTEX AND MTBE)
	2.1 Introduction
	2.2 The Hydrocarbon Spill Screening Model
	2.3 Data Sets
	2.4 Application of HSSM to a Field Site
	2.5 Nature of the Hagerman Avenue Plumes
	2.6 Analysis of Data from Hagerman Avenue
	2.7 Simulation of Hagerman Avenue
	2.8 Conclusions
	2.9 Acknowledgments
	2.10 References

3	PUMP-AND-TREAT FOR REMEDIATION AND PLUME CONTAINMENT: APPLICATIONS, LIMITATIONS, AND				
	KELEVANT PROCESSES 79 Time II III ID D 11				
	11ssu H. Illangasekare ana Danny D. Kelble				
	3.1 Introduction				
	3.3 NAPL Entrapment and Contaminant Processes during				
	2.4 Europeimontal Demonstration of Dissolution and an Desidual and				
	5.4 Experimental Demonstration of Dissolution under Residual and				
	3.5 Summary and Conclusions				
	3.6 Acknowledgments				
	3.7 References 117				
	<i>5.7</i> References				
4	NATURAL BIOATTENUATION OF ANAEROBIC HYDROCARBONS AND CHI ORINATED SOLVENTS IN GROUNDWATER 121				
	Robert C. Borden				
	4.1 Introduction				
	4.2 Processes Controlling Contaminant Distribution. Transport, and				
	Attenuation in the Subsurface				
	4.3 Biotransformation of Petroleum Hydrocarbons and				
	Related Compounds				
	4.4 Biotic and Abiotic Transformation of Chlorinated Aliphatic				
	Hydrocarbons				
	4.5 Assessment of Natural Attenuation				
	4.6 Mathematical Models of Natural Attenuation				
	4.7 Future Research				
	4.8 References				
5	STEAM FLOODING FOR ENVIRONMENTAL REMEDIATION 153				
	Ronald W. Falta				
	5.1 Introduction				
	5.2 Thermophysical Aspects of Steam Remediation				
	5.3 Numerical Modeling of Steam Injection for Remediation				
	5.4 Field Studies				
	5.5 Summary and Conclusion				
	5.6 References				
6	AIR SPARGING TECHNOLOGY: THEORY AND MODELING OF				
	REMEDIAL DESIGN SYSTEMS 193				
	Cris B. Liban				
	6.1 Introduction				
	0.2 Dackground				
	6.4 Air Sparging Screening Tools				
	6.5 Bioventing 200				
	6.6 Vertical Pine Modeling 207				
	6.7 Horizontal Pine Modeling 219				
	· · · · · · · · · · · · · · · · · · ·				

CONTENTS

6.8 Pulsed Air Flow	
6.9 Air Sparging and Biosparging	
6.10 Summary	
6.11 References	
INDEX	

CONTRIBUTING AUTHORS

Zafar Adeel Environment and Sustainable Development The United Nations University 53-70 Jingumae, 5-Chome Shibuya-ku, Tokyo 150 Japan

Robert C. Borden Department of Civil Engineering North Carolina State University Raleigh, NC 27695

Randall J. Charbeneau Center for Research in Water Resources The University of Texas at Austin Austin, TX 78712

Ronald W. Falta Geological Sciences and Environmental Engineering and Science Departments Clemson University Clemson, SC 29634-0976

Charles R. Faust HIS Geo Trans, Inc. 46050 Manekin Plaza, Suite 100 Sterling, VA 20166 Tissa H. Illangasekare Environmental Science and Engineering Colorado School of Mines Golden, CO 80401-1887

Cris B. Liban ThermoRetec Consulting Corporation 1250 E. 223rd Street, Suite 114 Carson, CA 90745

James W. Mercer HIS Geo Trans, Inc. 46050 Manekin Plaza, Suite 100 Sterling, VA 20166

Danny D. Reible Hazardous Waste Research Center Louisiana State University Baton Rouge, LA 70803

James W. Weaver Ecosystems Research Division National Exposure Research Laboratory U.S. Environmental Protection Agency Athens, GA 30605

FOREWORD

Groundwater contamination due to organic contaminants is a common occurrence in the United States and elsewhere. The detection of large-scale groundwater contamination in the United States in the early to mid-1970s brought about the implementation of two important federal acts: the Resources Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, or Superfund). With the initiation of these acts, research related to soil and groundwater remediation accelerated and opened the public debate on health hazards caused by contaminated drinking water. The detailed investigation of early contaminated groundwater sites revealed that hazardous organic contaminants ranging from gasoline to chlorinated solvents were responsible for these widespread environmental problems. It was also found that these contaminants entered the valuable drinking water aquifers due to leaks and spills of underground storage tanks and pipelines as well as unauthorized disposal of hazardous wastes.

When large-scale groundwater contamination was first detected, remediation technologies were almost nonexistent, except pump-and-treat technology. Therefore, great emphasis was placed by federal, state, and private agencies on developing innovative technologies to treat contaminated groundwater so that health risks would be minimized and drinking water sources preserved. However, early progress in remediation technologies was slow because of the lack of understanding of the physical, chemical, and biological processes that control the fate and transport of organic contaminants in the subsurface as well as the complexity of the chemicals themselves. The processes controlling the environmental fate of organic chemicals in the vadose zone are different from those in the saturated zone. Similarly, different organic chemicals-ranging from hydrocarbons to dense solvents-react differently to subsurface conditions. Even in the presence of these difficulties and other limitations, such as subsurface heterogeneity, researchers have developed many innovative technologies to remediate aquifers contaminated with hazardous waste.