Sustainable Sludge Management

Production of Value Added Products

EDITED BY

R. D. Tyagi, Rao Y. Surampalli, Song Yan, Tian C. Zhang, C. M. Kao, and B. N. Lohani

SUSTAINABLE SLUDGE MANAGEMENT

PRODUCTION OF VALUE ADDED PRODUCTS

SPONSORED BY Sustainable Sludge Management Task Committee of the Environmental Council

Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers

EDITED BY R. D. Tyagi Rao Y. Surampalli Song Yan Tian C. Zhang C. M. Kao B. N. Lohani

Published by the American Society of Civil Engineers

Library of Congress Cataloging-in-Publication Data

Sustainable sludge management production of value added products / sponsored by Sludge Management Task Committee of the Environmental Council, Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers ; edited by R. D. Tyagi ... [et al.].

p. cm. Includes bibliographical references and index. ISBN 978-0-7844-1051-6

1. Sewage sludge digestion. 2. Sewage sludge--Management. 3. Sewage sludge--Recycling. I. Tyagi, R. D., 1952- II. Environmental Council of the States (U.S.). Sludge Management Task Committee of the Environmental Council. III. Environmental and Water Resources Institute (U.S.)

TD767.S837 2009 628.3--dc22

2009033952

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4400

www.pubs.asce.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefore. This information should not be used without first securing competent advice with respect to its suitability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and reprints.

You can obtain instant permission to photocopy ASCE publications by using ASCE's online permission service (<u>http://pubs.asce.org/permissions/requests/</u>). Requests for 100 copies or more should be submitted to the Reprints Department, Publications Division, ASCE, (address above); email: permissions@asce.org. A reprint order form can be found at http://pubs.asce.org/support/reprints/.

Copyright © 2009 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-1051-6 Manufactured in the United States of America.

Preface

The 21st century indicates an increasing interest in sustainable sludge management- production of value added products. These products have attracted the attention of citizens, scientists, engineers, researchers, state/federal agencies, environmental groups, industrial/commodity groups and regulators.

Stricter regulations imposed on sustainable sludge management in different countries is catalyzing the re-orientation of the sludges to value-addition. Processes which promote sustainability will become viable options for resource management if conversion into a "value-added product" can be realized. A value-added product implies that the value of the final product should exceed the cost of processing.

The ASCE's Technical Committee on Hazardous, Toxic, and Radioactive Waste Management identified the need to collect and present the latest information on the recent trends in bioconversion of sludge to value added products namely, biopesticides, biosurfactants, enzymes, bioplastics, biofertilizers/biofloculants. The committee envisioned preparing an easy-to-read book that would serve as a reference for practicing professionals and be equally effective as a text in undergraduate or graduate courses.

This book report is organized by types of value added products by sludge (biosolids). Chapter 1 introduces the topic of the book report. Chapter 2 discusses wastewater sludge characteristics. Chapter 3 discusses value added products from wastewater sludge: a road to sustainability, while Chapter 4 talks about emerging value added products and miscellaneous products. Chapters 5, 6, 7, 8, 9 and 10 present detailed information about bioconversion of sludge to various types of value added products-biosurfactant, bioplastics, bioflocculants, biopesticides, biofertilizers/ bioinoculants, enzymes, respectively. Finally, Chapter 12 discusses the fate of priority and emerging organic compounds during pre-treatment and bioconversion of wastewater sludge.

The editors acknowledge the hard work and patience of all authors who have contributed to this book.

RDT, RYS, SY, TCZ, CMK, BNL

Contributing Authors

Satinder K. Brar, INRS, Universite du Quebec, Quebec, QC, Canada

C.M. Kao, National Sun Yat-Sen University, Kaohsiung, Taiwan

B.N. Lohani, Asian Development Bank Manila, Philippines

Bala Subramanian, INRS, Universite du Quebec, Quebec, QC, Canada

Rao Y. Surampalli, U.S. Environmental Protection Agency, Kansas City, KS, USA

R.D. Tyagi, INRS, Universite du Quebec, Quebec, QC, Canada

Mausam Verma, Dalhousie University, Halifax, NS, Canada

Song Yan, INRS, Universite du Quebec, Quebec, QC, Canada

Tian C. Zhang, University of Nebraska, Lincoln, NE, USA

Contents

Chapter 1	Introduction	1
1.1	Background	1
1.2	Production of Value Added Products from Wastewater Sludge	3
Chapter 2	Wastewater Sludge Characteristics	6
2.1	Introduction	6
2.2	Physical Characteristics	7
2.3	Chemical Characteristics	12
2.4	Biological Characteristics	22
2.5	The Role of Sludge Characteristics on Production of Value	25
	Added Products from Sludge	
2.6	Conclusion	26
2.7	Acknowledgements	27
2.8	References	28
Chapter 3	Value Added Products from Wastewater Sludge:	37
	A Road to Sustainability	
3.1	Introduction	37
3.2	Conventional Value-Added Products	40
3.3	Problems Associated with Traditional Applications of Sludge	48
3.4	Future Outlook	54
3.5	Conclusion	56
3.6	Acknowledgements	57
3.7	References	57
Chapter 4	Emerging Value Added Products and Miscellaneous	66
	Products	
4.1	Introduction of Emerging Value Added Products	66
4.2	Construction Materials	66
4.3	Biosorbents	71
4.4	Fuels	77
4.5	Introduction of Miscellaneous Products	83
4.6	Conclusion	89
4.7	Acknowledgements	89
4.8	References	89
Chapter 5	Biosurfactants	101
5.1	Introduction	101
5.2	Types, Characteristics, Advantages and Disadvantages	102

5.3	Production of Biosurfactants	104
5.4	Potential Commercial Applications	107
5.5	Case Studies	112
5.6	Concluding Remarks	116
5.7	Acknowledgements	116
5.8	References	116
Chapter 6	Bioplastics from Activated Sludge	123
6.1	Introduction	123
6.2	Waste Materials as Carbon Substrates for PHA Production Using Pure Cultures	124
6.3	Mixed Cultures in Activated Sludge Used as the Microorganisms for PHA Production	128
6.4	Conclusion	138
6.5	Acknowledgements	139
6.6	References	139
Chapter 7	Bioflocculants	146
7.1	Introduction	146
7.2	Background of Bioflocculants in Wastewater Sludge	147
7.3	Bioflocculation of Sludge	150
7.4	Conclusion	160
7.5	Acknowledgements	161
7.6	References	161
Chapter 8	Biopesticides-Bacillus thuringiensis	168
8.1	Introduction	168
8.2	Fermentation	169
8.3	Scale-up of Bt Fermentation	182
8.4	Issues Related to Using Sludge as a Raw Material for Biopesticides Production	184
8.5	Downstream Processing—Centrifugation and Ultrafiltration	187
8.6	Formulation Development	189
8.7	Registration of Bt Biopesticides	191
8.8	Field Application	193
8.9	Future Outlook	193
8.10	Conclusion	195
8.11	Acknowledgements	196
8.12	References	196
Chapter 9	Biofertilizers/Bioinoculants	203
9.1	Introduction	203
9.2	Necessity of Bioinoculants	205
9.3	Nutrient Requirements of Rhizobia	205
9.4	Alternative Media for Rhizobial Production	208
9.5	Use of Municipal and Industrial Wastewater Sludge as Substrate	208

9.6	Wastewater Sludge as Organic Fertilizers	216
9.7	Plant Growth Promoting Rhizobacteria (PGPR)	220
9.8	Siderophoregenic Bioinoculants	220
9.9	Conclusion	222
9.10	Acknowledgements	223
9.11	References	223
Chapter 10	Enzymes: Production and Extraction	231
10.1	Introduction	231
10.2	Alkaline Proteases: Production and Applications	234
10.3	Other Enzymes: Production and Applications	243
10.4	Case study—Enzymes Production Using WWS as a Raw Material	245
10.5	Enzyme Extraction from Activated Sludge	247
10.6	Conclusion	249
10.7	Acknowledgements	249
10.8	References	250
Chapter 11	Economical Consideration of Value Added Product	262
	Production	
11.1	Introduction	262
11.2	Definition of Cost Parameters	263
11.3	Bacillus thuringiensis Biopesticides Production	267
11.4	Trichoderma spp. based BCAs Production	290
11.5	Acknowledgements	307
11.6	References	308
Chapter 12	Fate of Priority Pollutants and Emerging Organic	313
	Compounds during Pre-Treatment and	
	Bioconversion of Wastewater Sludge	
12.1	Introduction	313
12.2	Brief Description of Organic Chemicals Found in Sewage	317
12.2	Dra Transformation of Organia Compounds	272
12.3	Pietronoformation of Wastewater Sludge and Fate of Organics	323
12.4	Future Desenative	324
12.5	Conclusion	329
12.0	A cknowledgements	320
12.7	A bbreviations	330
12.0	References	331
12.7		551

Index

This page intentionally left blank

CHAPTER 1

Introduction

S. Yan, S. Bala Subramanian, R. D. Tyagi, R. Y. Surampalli, C. M. Kao, B. N. Lohani, and Tian C. Zhang

1.1 Background

The increase in urban population world over with concomitant growth in wastewater treatment plants has caused production of large volumes of wastewater sludge. Sewage sludge is generated mainly by primary (physical and/or chemical), secondary (biological) and tertiary (additional to secondary, often nutrient removal) wastewater treatment. It accounts for the largest volume of solid waste generated by municipal wastewater treatment plants. Municipal sewage sludge processing, utilization and disposal are of the most difficult and expensive operations conducted by municipalities today. In the United States, it is estimated that 7.1 million tons of biosolids was generated for use or disposal in 2000, growing to 7.6 million tons in 2010. This sludge must be managed in an environmentally acceptable way.

Sludge is over 95% water and must generally undergo various treatment processes such as preliminary operations (e.g., storage, grinding, blanding degritting), thickening, stabilization, conditioning, dewatering, among others (e.g., heat drying/other processing, thermal reduction), before its reuse or final disposal. The water content is generally reduced by thickening and dewatering. Sludge thickening is achieved through the use of drum thickeners and gravity belt thickeners. Sludge also goes through a biological stabilization process to reduce the fermentation potential of the organic matter and to reduce the concentration of pathogenic microorganisms. Stabilization can be achieved through microbial (anaerobic or aerobic) digestion or thermal stabilization. Dewatering is done by means of centrifugation, filtration, or thermal drying. Dewatered, stabilized sludge is generally in the form of a "cake" that still contains some water. Sludge cakes can be landfilled, incinerated, or used as a soil amendment. The combustion of sludges produces fly ash (small airborne particles that can penetrate deep into the respiratory