
Earthquakes Engineers

An International History

Robert K. Reitherman

Earthquakes and Engineers

Other Titles of Interest

- America Transformed: Engineering and Technology in the Nineteenth Century, by Dean Herrin. (ASCE Press, 2003). A visual sampler of 19th-century engineering and technology that illuminates the scope and variety of the U.S. industrial transformation. (ISBN 978-0-7844-0529-1)
- American Civil Engineering History: The Pioneering Years, edited by Bernard G. Dennis Jr., Robert J. Kapsch, Robert J. LoConte, Bruce W. Mattheiss, and Steven M. Pennington. (ASCE Proceedings, 2003). Documents the emergence and growth of U.S. civil engineering. (ISBN 978-0-7844-0654-0)
- Beyond Failure: Forensic Case Studies for Civil Engineers, by Norbert J. Delatte Jr. (ASCE Press, 2009). Narrates the circumstances of important failures that have had wide-reaching impacts on civil engineering practice. (ISBN 978-0-7844-0973-2)
- Designed for Dry Feet: Flood Protection and Land Reclamation in the Netherlands, by Robert J. Hoeksema. (ASCE Press, 2006). Explores Holland's unique challenges in water control and management across the centuries. (ISBN 978-0-7844-0829-2)
- Engineering Legends: Great American Civil Engineers, by Richard G. Weingardt. (ASCE Press, 2005). Sketches the lives and achievements of 32 great U.S. civil engineers, from the 1700s to the present. (ISBN 978-0-7844-0801-8)
- History of the Modern Suspension Bridge: Solving the Dilemma between Economy and Stiffness, by Tadaki Kawada; translated by Harukazu Ohashi; edited by Richard Scott. (ASCE Press, 2010). Examines how engineers solved the problems of reinforcing against wind and traffic without sacrificing economy. (ISBN 978-0-7844-1018-9)
- In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability, by Richard Scott. (ASCE Press, 2001). Comprehensively describes the changes imposed on the design of suspension bridges as a result of the 1940 collapse of the first Tacoma Narrows Bridge. (ISBN 978-0-7844-0542-0)

Earthquakes and Engineers

An International History

Robert K. Reitherman

Library of Congress Cataloging-in-Publication Data

Reitherman, Robert, 1950-

Earthquakes and engineers: an international history / Robert K. Reitherman.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-7844-1071-4 (pbk.) — ISBN 978-0-7844-7635-2 (ebook)

1. Earthquake engineering—History. I. Title.

TA654.6.R48 2011

624.1'762—dc23

2011035646

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191 www.asce.org/pubs

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document.

ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be obtained by sending an e-mail to permissions@asce.org or by locating a title in ASCE's online database (http://cedb.asce.org) and using the "Permission to Reuse" link.

Front cover photograph courtesy of MIT Museum. Professor Arthur Ruge of MIT (foreground) conducts an experiment on a scale model water tank, using his optical cam shake table, which reproduced the motion from a recorded earthquake.

Copyright © 2012 by the American Society of Civil Engineers. All Rights Reserved.

ISBN 978-0-7844-1071-4 (paper)

ISBN 978-0-7844-7635-2 (e-book)

Manufactured in the United States of America.

18 17 16 15 14 13 12 11

1 2 3 4 5

Contents

		-
Int	troduction	
	The Definition of "Earthquake Engineering"	
	Engineers and Scientists	
	Earthquake Engineering and Earthquake-Resistant Construction	
	Scope	
	Why This Book?	5
1	Approaches to Earthquake Engineering History	7
	Earthquake Engineering Lore Can Be Fascinating, yet Factual	
	The Value of Thinking	11
	Adding Breadth to Engineering	11
	Credit Where Credit Is Due	12
	History as a Way of Thinking about the Future	13
	Past Ideas and Developments May Still Be Useful Today	13
	Chronology Vis-à-Vis History	
	History as a Sieve	
	Potential Sources of Bias	17
	Why the Emphasis on the Early Years?	25
	The End of Earthquake Engineering History?	
2	The Complexities of Earthquake Engineering	23
_	Similarities and Differences with Other Engineering Disciplines	
	Risk	
	Inelasticity and Nonlinear Behavior.	
	Dynamics	42

vi Earthquakes and Engineers

3	Ancient Understanding and Misunderstanding
	China
	India
	Japan
	Africa
	New Zealand64
	Greece
	Middle East
	Fiji
	Mexico
	North American Indians
	Limited Accomplishments from Ancient Times
4	Beginnings of the Modern Scientific Approach:
•	Renaissance to 1850
	The Development of Geology as a Science
	Galileo, Newton, Hooke: The Beginnings of Physics
	and Engineering
	Earthquake-Resistant Construction Traditions in the
	Seventeenth and Eighteenth Centuries
	Civil Engineering Development as a Prerequisite to
	Earthquake Engineering98
	Lattiquake Engineering90
5	The First Seismologists and Earthquake Engineers:
	The Nineteenth Century105
	Robert Mallet, the First Earthquake Engineer
	Japan in the Meiji Period
	The University of Tokyo
	John Milne: The Foremost Early Seismologist
	Ayrton, Perry, Ewing, Knott, Gray, and Mendenhall
	Development of Seismology Outside of Japan
	Intensity, an Early Tool of Seismologists and Engineers
	Understanding Faults and the Generation of Earthquakes
	Steel and Reinforced Concrete Join the Traditional
	Construction Materials
	Moment-Resisting Frames, Braced Frames, Walls,
	and Diaphragms
	Construction Vocabulary in Place, but Lacking Syntax
	The Lack of Quantitative Measures of Seismic Loads
	Static Analysis of a Dynamic Phenomenon
	· · · · · · · · · · · · · · · · · · ·
	The Many Unsolved Problems

0	1900–1940: Poised for Further Development but	150
	Lacking Essential Analytical Tools	
	Earthquake Engineering in Japan	
	Developing "Surficial" Seismology	176
	Research and Practice Initiatives after the 1906 San	
	Francisco Earthquake	
	The 1908 Messina-Reggio Earthquake	189
	1910 Cartago, Costa Rica, Earthquake: An Early Recognition of	
	the Vulnerability of Unreinforced Masonry	196
	The 1923 Kanto, Japan, Earthquake: The First Test of Seismically	
	Analyzed and Designed Buildings	197
	Seismologists Develop the First Estimates of Future Earthquakes:	
	Where, How Big, and How Often	205
	Magnitude Becomes a Useful Tool for Seismologists and	
	Engineers Alike	207
	Earthquakes of the 1930s Bring Codes to India, Pakistan,	
	New Zealand, the United States, Chile, and Turkey	216
	Soil Engineering Develops	228
	Measurements of Ground Shaking and Attempts by Engineers to	
	Analyze Those Measurements	229
	Assessing the State of Practice in 1940	
	O .	
7	1940–1960: Major Advances in Understanding and Design.	241
	Laboratory and Field Instrumentation	
	Laboratory Testing Apparatus	
	Aeronautics, Atomic and Other Bombs, World War II,	
	and the Cold War	256
	Tsunamis Become a Recognized Research and Risk Reduction Topic	
	Dynamics Comes to Soils and Foundation Engineering	
	How Severely Can the Ground Shake?	
	Ductility Becomes a Prime Goal to Achieve Deformation Capacity,	
	Rather Than Strength Capacity	273
	The Duet of Ground Motion and Structural Response	
	The Longevity of the Response Spectrum and Equivalent Lateral	
	Force Methods	280
	The First World Conference on Earthquake Engineering	
	The Internationalization of the Field	
	A Breakthrough in the Earth Sciences: Plate Tectonics Theory	
	A Breakthrough in the Earth Sciences: Plate Tectonics Theory	300
8	1960–2000: Computers, Instruments, and Apparatus	
•	Provide Needed Analysis and Design Tools	305
	Computers	
	Computer Software Development	
	The Internet	
	THE HIGHEL	527

viii Earthquakes and Engineers

	Instruments for Measuring the Behavior and Properties of the	
	Ground and Structures	327
	Simulation of Earthquakes with Shake Tables, Reaction Walls,	
	Forced Vibration, Centrifuges, and Other Apparatus	330
9	1960–2000: The Construction Industry Introduces	
	New Innovations and Challenges	343
	New Structural Systems	
	The Capacity Design Method	
	Capacity Spectrum, Pushover, and Displacement-Based Methods	
	Improvements in Ductility	
	Seismic Isolation	
	Damping Devices.	
	Active Control	
	Architectural Trends Challenge the Engineers	
10	1960–2000: Universities and Research Institutes Provide	400
	the Well-Educated Experts for a Growing Field	409
	The First Earthquake Engineering Professors Teach	400
	Themselves a New Subject	
	Japan	
	United States	
	Italy	
	Turkey	
	India	
	New Zealand	
	China	
	Chile	
	Canada	
	The Technology of Teaching	
	Social Scientists Study Earthquakes	449
11	1960-2000: Special Design Problems Provide	
	Continuing Motivation for Innovation	453
	Tall Buildings	
	Hospitals	
	Nonstructural Components Become More Extensive and	
	More Damageable	476
	Retrofitting to Reduce Existing Risks	
	Infrastructure Receives Specialized Attention	
	•	
12	1960–2000: Geotechnical Earthquake Engineering	
	Enters Its Growth Phase	
	Liquefaction, Surface Fault Rupture, Landslides	534

	Effects of Soil on Shaking	547
	Seismic Zonation	549
	Signs of a Maturing Discipline	552
13	1960–2000: Probabilistic Approaches	553
	Earthquake Loss Estimation	
	Average Loss, Damage Probability Matrices, and Fragility Curves	
	Probabilistic Approaches to Ground-Motion Mapping	564
	Probabilistic Definitions of Safety	567
14	1960–2000: Increasing Funding, Regulations, and Public	
	Expectations Provide Support for a Maturing Field	575
	Rising Expectations	
	Mitigation of Risk Versus Elimination of Risk	580
	The Spread of Earthquake Construction Regulations	
	Disasters Continue to Be the Major Motivators	
	Earthquake Engineering Is Freely Imported and Exported	
	Growth in the Literature	
	Solving Problems Versus Identifying Problems	
	A Global Attitude Toward Earthquake Risk	609
	All the Eggs in One Basket	
	In Search of the Seismic Plimsoll Mark	614
	From Empiricism to Theory	619
Epil	ogue: The Future of Earthquake Engineering History	
	Disciplinary Backgrounds of Historical Investigators	623
	Oral Histories.	626
	Manuscripts, Documents, and Images	627
	Collections of Artifacts: Construction Samples, Laboratory	
	Apparatus and Specimens, and Instruments	
	Museums of Earthquake Engineering	
	Unanswered Questions	
	Conclusion	633
	pendix: Earthquake Engineering History as Delineated	63.5
•	Significant Earthquakes	
	erences	
	ex	
Ahc	out the Author	749