GEOTECHNICAL SPECIAL PUBLICATION NO. 238

GROUND IMPROVEMENT AND GEOSYNTHETICS

SELECTED PAPERS FROM THE PROCEEDINGS OF THE 2014 GEOSHANGHAI INTERNATIONAL CONGRESS

May 26-28, 2014 Shanghai, China

SPONSORED BY
The Geo-Institute of the American Society of Civil Engineers

EDITED BY
Jie Han, Ph.D., P.E.
Anand J. Puppala, Ph.D.
Shui-Long Shen, Ph.D.
Sadik Oztoprak, Ph.D.
Jie Huang, Ph.D.

Published by the American Society of Civil Engineers

This is a preview. Click here to purchase the full publication.

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4382 www.asce.org/bookstore | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in ASCE's Civil Engineering Database (http://cedb.asce.org) or ASCE Library (http://ascelibrary.org) and using the "Permissions" link.

Errata: Errata, if any, can be found at http://dx.doi.org/10.1061/9780784413401

Copyright © 2014 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-1337-1 (CD) ISBN 978-0-7844-1340-1 (E-book PDF) Manufactured in the United States of America.

Preface

This special publication contains 54 technical papers which cover recent advances in research and practical applications in ground improvement and geosynthetics. Among 54 technical papers, half of them are included in three sessions devoted to ground improvement and the other half are included in two sessions devoted to geosynthetics. Among 27 technical papers for ground improvement, 9 papers focuses on ground improvement with pile/column technology as foundation or embankment support, 12 papers on ground improvement with chemical, electrical, or biological technology for soil stabilization, and 6 papers on ground improvement with other technology. Among the other 27 technical papers, 21 technical papers focus on geosynthetic reinforcement for roads, slopes, walls, and foundations and 6 papers on geosyntheics for other applications, such as the use of geofoam.

Each paper published in this ASCE Geotechnical Special Publication (GSP) was evaluated by at least two reviewers including the editors. The authors of the accepted papers have addressed all the reviewers' comments to the satisfaction of the editors. All published papers are eligible for discussion in the Journal of Geotechnical and Geoevironmental Engineering and are also eligible for ASCE awards.

The papers included in this publication were presented during the GeoShanghai 2014 International Conference held in Shanghai, China, May 26-28, 2014. This conference was hosted by Tongji University, the Chinese Institution of Soil Mechanics and Geotechnical Engineering, the Chinese Society for Rock Mechanics and Engineering and the Shanghai Society of Civil Engineering in cooperation with ASCE GeoInstitute, the International Society for Soil Mechanics and Geotechnical Engineering, the International Association of Chinese Infrastructure Professionals, the Deep Foundations Institute in the USA, the Alaska University Transportation Center (USA), University of Edinburgh (UK), Ruhr University Bochum (Germany), University of Cambridge (UK), Ecole des Ponts Paristech (France), Virginia Polytechnic Institute and State University (USA), the Shanghai Society of Theoretical and Applied Mechanics, Nagoya Institute of Technology (Japan), University of Arizona (USA), the Transportation Research Board (TRB) (USA), University of Kansas (USA), Georgia Institute of Technology (USA), Vienna University of Natural Resources and Applied Life Sciences (Austria), and University of Tennessee (USA).

We are thankful to Professor Wenqi Ding and Prof. Lianyang Zhang, the chairs of GeoShanghai, for their leadership in organizing this conference and Professor Xiaojun Li and Professor Xiaogun Li and Professor Xiong Zhang, the secretary generals of GeoShanghai, and the local organizing committee for their diligent and tireless work for this conference. Finally, we would like to acknowledge the assistance of Donna Dickert of ASCE and Robert Schweinfurth of ASCE Geo-Institute (G-I).

The editors wish to thank the following individuals who reviewed one or more papers for this geotechnical special publication:

Tejo Vikash Bheemasetti Omer Bilgin Raju Acharya Sazzad Bin-Shafique Jianfeng Chen Jinjian Chen Qiming Chen Bhaskar Chittoori Jun Chen Ryan Corey Jun Guo Jie Han Dong-Wei Hou Jie Huang Rui Jia Jingshan Jiang Yan Jiang Deep Khatri Sadik Oztoprak Aravind Pedarla Sanat Pokharel Yu Qian Mustapha Rahmaninezhad Shui-Long Shen Xiaohui Sun Jitendra Thakur Fei Wang Zhifeng Wang Huaina Wu Chengzhi Xiao Ye-Shuang Xu Zhonghua Xu Xiaoming Yang Zhen-Yu Yin Xinbao Yu Zhen Zhang

For any reviewers whose names were inadvertently missed, we offer our sincere apologies.

Editors:

Jie Han, the University of Kansas, USA

Anand Puppala, the University of Texas at Arlington, USA

Shuilong Shen, Shanghai Jiaotong University, China

Sadik Oztoprak, Istanbul University, Turkey

Jie Huang, the University of Texas at San Antonio, USA

January 20, 2014

GSP 238 Table of Contents

Ground Improvement for Rail, Port, and Road Infrastructure—From Theory

1

Keynote Lecture

to Practice	
Buddhima Indraratna, Cholachat Rujikiatkamjorn, and Sanjay Nimbalkar	
Ground Improvement with Pile or Column Technology	
Design Charts for a Foundation System Reinforced with Peripheral Vertical	20
Inserts	
Prashant Garg, Harvinder Singh, and J. N. Jha	
Numerical Analysis of Piled Embankments on Soft Soils	30
Wisam Al-Ani, Dariusz Wanatowski, and Swee Huat Chan	
Experimental Research of Bearing Behavior on Lime-Soil Pile and CFG Pile	40
Rigid-Flexible Pile Composite Subgrade	
Feng-xiang Yan and Xian-zhi Huang	
Numerical Analyses of Soil Arching in Rigid Pile Supported Embankments	49
Shitong Song and Chao Xu	
A Note on Pile Length Optimization of Pile Groups Considering the Non-	57
Linear Behavior of Piles	
Fayun Liang, Haibing Chen, Zhu Song, and Jie Han	
Vibro-Replacement Ground Improvement within Layered and Interbedded	67
Variably Cemented Sedimentary Limestone and Granular Soils	
Matthew E. Mever, Lijian Zhou, and Mark E. Plaskett	

Numerical Analysis of Failure Modes of Deep Mixed Column-Supported	78
Embankments on Soft Soils	
Zhen Zhang, Jie Han, and Guanbao Ye	
Experimental Study on the Horizontal Bearing Capacity of a Cement-Soil Pile	88
Reinforced with Fiberglass Geogrid	
Chao Yan, Song-yu Liu, and Yong-feng Deng	
Consolidation of Soft Foundations Treated with Composite Columns	98
Gang Zheng, Yan Jiang, and Jie Han	
Ground Improvement with	
Chemical, Electrical, or	
•	
Biological Technology	
Current State of the Art in Jet Grouting for Stabilizing Soft Soil	107
Shui-Long Shen, Zhi-Feng Wang, and Chu-Eu Ho	
Laboratory Tests and Numerical Analysis on the Grouting Reinforcement	117
Effect for Soft-Soil Subgrade Settlement of a High-Speed Railway	
Zhuohua Tang, Qianwei Xu, Xinan Yang, and Jun Zhang	
Jet Grouting for the Mitigation of Excavation Wall Movements in Glacial Silts	128
Chu E. Ho and Shuang Hu	
Effect of Volcanic Ash Utilization As Substitution Material for Soil	138
Stabilization in View Point of Geo-Environment	
A. Rifa'i and N. Yasufuku	
Initial Investigation of Soil Stabilization with Calcined Dolomite-GGBS	148
Blends	
Kai Gu, Fei Jin, Abir Al-Tabbaa, and Bin Shi	
Laboratory Research on Resilient Modulus of Lime-Stabilized Soil	158
Jingsong Qian, Guoxi Liang, Jianming Ling, and Shuo Wang	
Modelling Behaviour of Cemented Clay Capturing Cementation Degradation	168

Lam Nguyen, Behzad Fatahi, and Hadi Khabbaz

Experimental Investigation of Sand-Nanosilica Mixture under Long-Term	178
Unfavourable Environments	
M. Y. Cheng and N. Saiyouri	
Experimental Study of the Electro-Osmosis Consolidation of Soft Clay under	188
Anode Follow-Up	
Fei-yu Liu, Wei Mi, Le Zhang, and Jun Wang	
Influence of Polarity Reversal and Current Intermittence on Electro-	198
Osmosis	
Yan-li Tao, Jian Zhou, Xiao-nan Gong, Zhuo Chen, and Ping-Chuan Hu	
Numerical Modeling of Artificial Ground Freezing: Multiphase Modeling and	209
Strength Upscaling	
MM. Zhou and G. Meschke	
Study on Strength Characteristics and Microcosmic Mechanisms of Silt	220
Improved by Lignin-Based Bio-Energy Coproducts	
Tao Zhang, Songyu Liu, Guojun Cai, and Anand J. Puppala	
Ground Improvement with	
Other Technology	
outer recimeregy	
Case Study of Ground Improvement in Qianhai Reclamation Area, Qianhai	231
Bay, Shenzhen	
A. G. Li, L. G. Tham, J. P. Wen, and S. C. Chen	
Model Test of Soft Soil Improved by High Energy Dynamic Replacement	241
Method	
Guanbao Ye and Yan Xu	
Durability Studies on Native Soil-Based Controlled Low Strength Materials	249
Bhaskar Chittoori, Anand J. Puppala, Aravind Pedarla, and Durga Praveen Reddy	
Vanga	
Impact Roller Compaction of Dry Sand in Laboratory Tests	258
Zhong-qing Chen, Chao Xu, Guan-bao Ye, and Chao Shen	
Improving Expansive Shale Behaviour Using Soil Replacement and Rock Fill	270
Muawia Dafalla, Mosleh Al-Shamrani, and A. Al-Omar	

Jian-ming Ling, Wen-yu Li, Qin-long Huang, and Xin Luo

Geosynthetic Reinforcement

Protection of Buried Pipelines Using a Combination of Geocell and Geogrid	289
Reinforcement: Experimental Studies	
A. Hegde, S. Kadabinakatti, and T. G. Sitharam	
Study of Geogrid Reinforcement Using Two-Dimensional Discrete Element	299
Method	
Xinbao Yu and Asheesh Pradhan	
Model Tests of Subsidence of Reinforced Soil over Voids	312
Vinh Le, Jie Huang, Sazzad Bin-Shafique, and A. T. Papagiannakis	
Model Studies on Geocell Reinforced Granular Sub-Bases	322
M. N. Asha and G. Madhavi Latha	
Behavior of Geogrid Reinforced Ballast at Different Levels of Degradation	333
Yu Qian, Erol Tutumluer, Debakanta Mishra, and Hasan Kazmee	
Vegetation Tests of Geocell-Reinforced Unpaved Shoulders	343
Jun Guo, Jie Han, Steven D. Schrock, and Robert L. Parsons	
Experimental Study on the Resilient Behavior of Triaxial Geogrid-Stabilized	353
Unpaved Roads	
Xiaohui Sun, Jie Han, Mark H. Wayne, Robert L. Parsons, and Jayhyun Kwon	
Evaluating Geogrid Performance with Loaded Wheel Tester	363
Xiang Shu, Hao Wu, Sheng Zhao, and Baoshan Huang	
Application of Jute Geotextiles for Rural Road Pavement Construction	370
A. J. Khan, F. Huq, and S. Z. Hossain	
Effect of Reinforcement Form on the Pullout Resistance of Reinforced Sand	380
Y. L. Lin, X. X. Li, and M. X. Zhang	
Behaviour of Prestressed Reinforced Foundation Beds Overlying Weak Soil	389
R. Shivashankar and J. Jayamohan	
Comparison of Strip-Reinforced with H-V Reinforced Foundations Using FEM	404
Juan Hou, MengXi Zhang, and Tao Tao Zhang	

Stabilization of Erodible Slopes with Geofibers and Nontraditional Liquid Additives	414
Rodney Collins, Mingchu Zhang, Leroy Hulsey, and Xiong Zhang	
Behavior of Strip Footing on Fiber Reinforced Model Slopes	425
M. Mirzababaei, E. Inibong, M. Mohamed, and M. Miraftab	
Seismic Parametric Study of the FoGuang Geosynthetic Reinforced Slope	435
Sao-Jeng Chao, Jia-Ruey Chang, Hui-Mi Hsu, and Han-Sheng Liu	
Analytical Study for Geosynthetic Reinforced Embankment on Elastic	444
Foundation	
Wan-Huan Zhou, Lin-Shuang Zhao, and Xi-Bin Li	
Research on the Anchorage-Reinforced Technology in Highway Subgrade	452
Widening Projects	
He Wang, Guang-qing Yang, Wei-chao Liu, and Bao-lin Xiong	
A Case Study of MSE Wall Stability: Comparison of Limit Equilibrium and	464
Numerical Methods	
Omar A. M. Moudabel, Garry H. Gregory, Xiaoming Yang, and Stephen A. Cross	
Reinforced Soil Retaining Walls in the Mina Al Fajer Resort Project, Fujairah,	471
UAE	
G. Murtaza	
Influence of Leveling Pad Interface Properties on Soil Reinforcement Loads	481
for Walls on Rigid Foundations	
Jianfeng Chen, Yan Yu, and Richard J. Bathurst	
Numerical Simulations for the Response of MSE Wall-Supported Bridge	493
Abutments to Vertical Loads	
Yewei Zheng, Patrick J. Fox, and P. Benson Shing	
Geosynthetics for Other	
-	
Applications	

Analytical and Numerical Studies of Geosynthetic Tubes Resting on	503
Deformable Foundations	

Wei Guo, Jian Chu, and Shuwang Yan

Compensated Raft Foundation on a Preloaded Soil Improved by Vertical	515
Drains	
Arindam Dey and Mamidi Anvesh Reddy	
Numerical Simulation of EPS Geofoam As Compressible Inclusions in Fly Ash	526
Backfill Retaining Walls	
B. Ram Rathan Lal, A. H. Padade, and J. N. Mandal	
Effects of Confinement on the Stress Strain Behavior of EPS Geofoam	536
Amsalu Birhan and Dawit Negussey	
Protection of Pipelines and Buried Structures Using EPS Geofoam	547
Steven F. Bartlett and Bret N. Lingwall	
Behavior Improvement of Raft Foundation on Port-Said Soft Clay Utilizing	557
Geofoam	